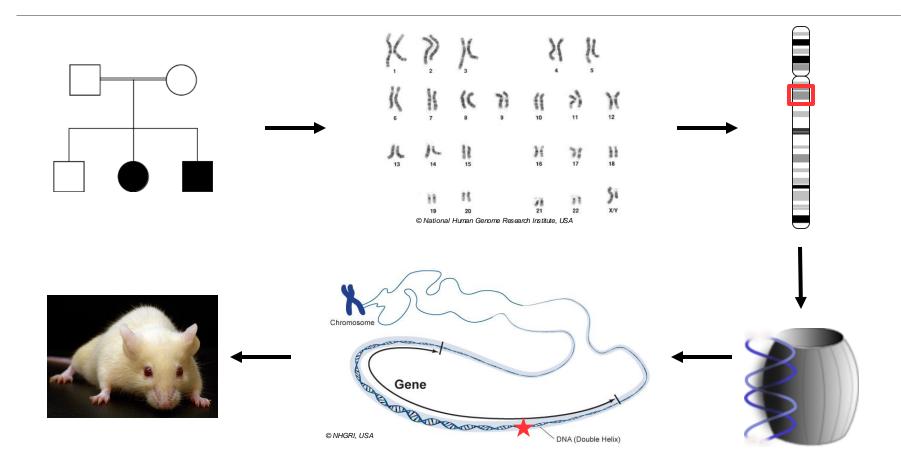
NO CONFLICTS TO DISCLOSE

ESHG 2017 – W05 Defining "mutation" or "polymorphism" using prediction tools

Organizer: Malte Spielmann (University of Washington) Presenters: Martin Kircher (BIH) & Dominik Seelow (Charité)

Copenhagen, 2017-05-28

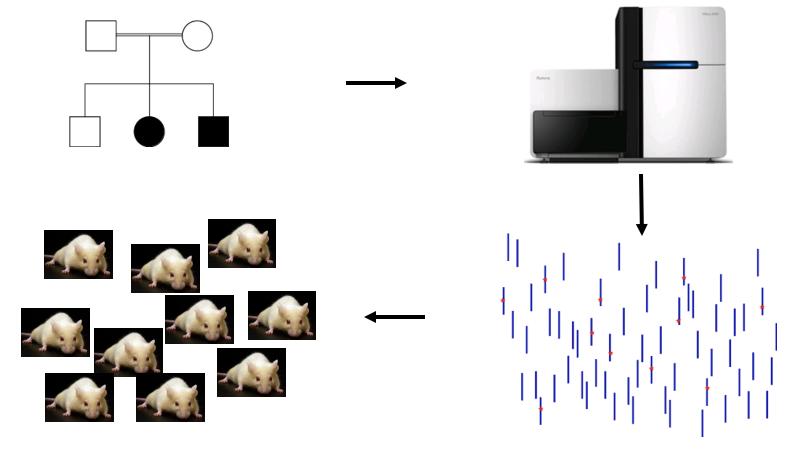
CONTENT


- 1. Welcome and opening remarks
- 2. Variants and polymorphisms in the context of disease
- 3. Annotation of variants
- 4. Considerations of variant filtering

(short break)

- 5. Assessment of variants
- 6. Challenges of interpreting non-coding variants
- 7. Questions and participant feedback

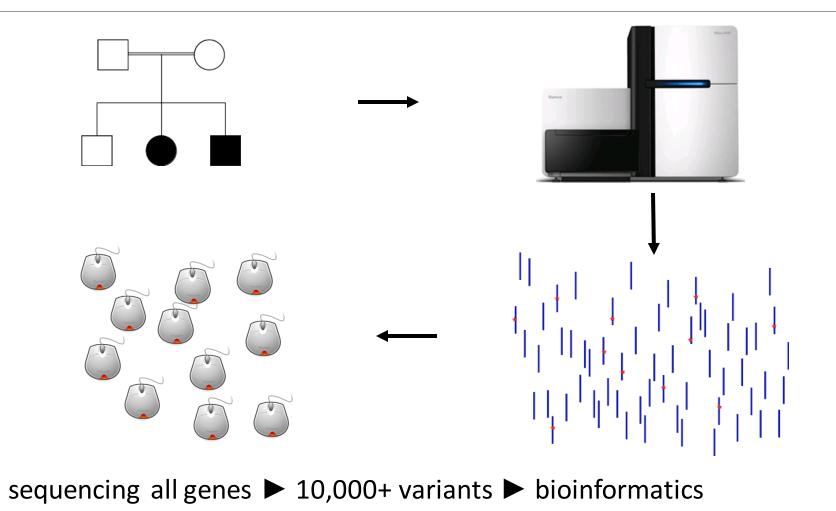
Discovery of disease mutations (past)


sequencing single candidate genes ► single variants ► confirmation

RFRI

& Max Delbrück Center

Discovery of disease mutations (present)



sequencing all genes ► 10,000+ variants ► ?

2017-05-28| ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools

Discovery of disease mutations (present)

2017-05-28| ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools

VARIANT AND POLYMORPHISMS IN THE CONTEXT OF DISEASE

- 1. Genetic models of disease
- 2. Reference-based analysis & Variant Call Format (VCF)
- 3. Which variants to trust?
- 4. Visualizing alignment files with IGV

• Variant:

Sequence difference identified in a comparison to a reference. *Can be used with modifiers:* e.g. pathogenic, likely pathogenic, uncertain significance, likely benign, or benign

• Mutation:

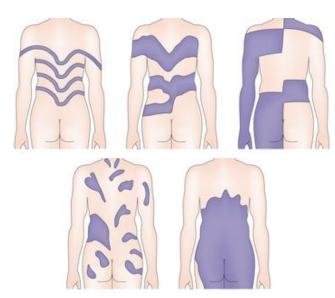
Variant identified in a paired sequencing effort (e.g. cancer vs. normal, somatic vs. germline, parents vs. offspring) *Earlier:* rare sequence change; potentially damaging

• Polymorphism:

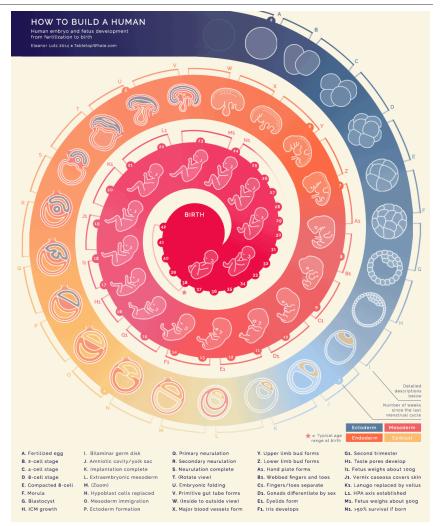
Variant identified across multiple unrelated individuals *Earlier:* DNA variant occurring with 1% or higher frequency in a population; considered neutral

Genetic models of disease (1)

- Dominant / recessive
- Homozygous / heterozygous / compound



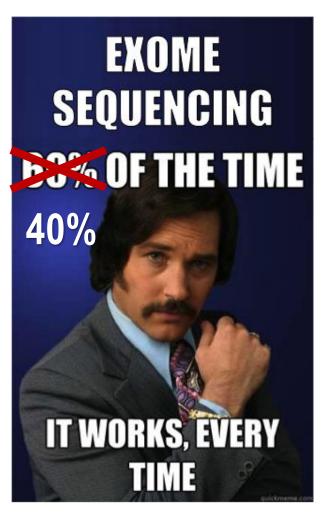
* require phase information


Genetic models of disease (2)

- Inherited vs. *De Novo*
- Somatic vs. Germline
- Mosaicism / Cancer

Left: doi: 10.1038/nrg3424 Right: http://tabletopwhale.com/2014/12/16/how-to-build-a-human.html

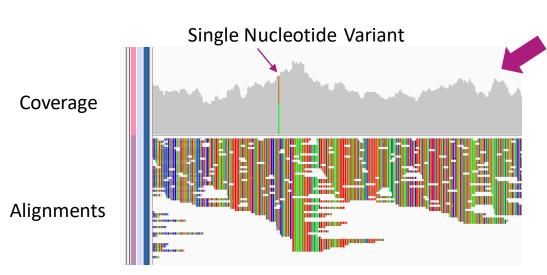
Whole genome vs. exome sequencing

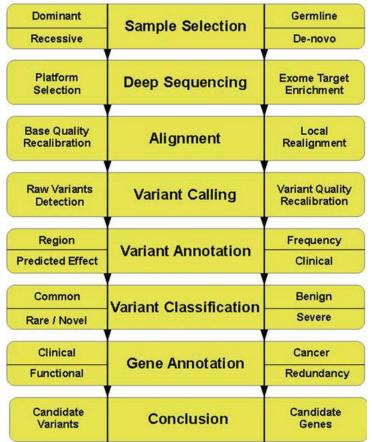


Exome sequencing (~ €350):

- ~25,000 50,000 variants mostly within annotated genes
- 1,000 2,000 'rare' variants

Whole genome (~ €1000):


- 1 3 million variants mostly outside of annotated genes
- 150,000 500,000 'rare' variants
- Prices without variant interpretation!



Reference-based variant analysis

Due to complexity of assembling and annotating genomes, best practice workflows involve alignments to a reference genome

DOI 10.1007/978-1-62703-514-9_8

- Tab-separated text format for storing variant information (typically SNPs, indels; but also structural variants)
- Development and specification driven by 1000 Genomes project
- Generated by many variant caller / genotyper packages
- Input for most downstream tools (e.g. Gemini, SeattleSeq, Variant Effect Predictor, SNPeff, AnnoVar, CADD)
- Official format specification:

http://samtools.github.io/hts-specs/VCFv4.2.pdf

Variant Call Format: header

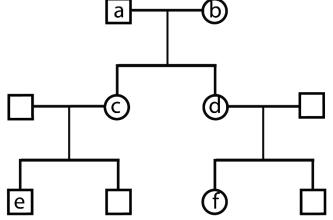
##fileformat=VCFv4.0

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data"> ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth"> ##INFO=<ID=AF,Number=.,Type=Float,Description="Allele Frequency"> ##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele"> ##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129"> ##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership"> ##FILTER=<ID=q10,Description="Quality below 10"> ##FILTER=<ID=s50,Description="Less than 50% of samples have data"> ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> ##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality"> ##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth"> ##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT
20	14370	rs6054257	G	A	29	PASS	NS=3;DP=14;AF=0.5;DB;H2	GT:GQ:D
20	17330	•	т	A	3	q10	NS=3;DP=11;AF=0.017	GT:GQ:D

Variant Call Format: variant lines

#	CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT
2	20	14370	rs605425	7 G	A	29	PASS	NS=3;DP=14;AF=0.5;DB;H2	GT:GQ:D
2	20	17330	•	т	A	3	q10	NS=3;DP=11;AF=0.017	GT:GQ:D
	CHROM POS ID REF ALT QUAL FILTE		pos are sem ref com	sorte i-colo erence ma sep ed-sca	(1st d nur n sep base arate led o	merical parated e(s): A ed list quality	ly, in ind list of u ,C,G,T,N of altern	ition 1, positions creasing order) unique identifiers or '.' nate non-reference allele	
R	INFO			FOR	MAT		NA00001		
	NS=3;D	P=14;AF	=0.5;DB;H	H2 GT:	GQ:DI	P:HQ	0 0:48:1	:51,51	
	NS=3;D	P=11;AF	=0.017	GT:	GQ:DI	P:HQ	0 1:3:5:	65,3	
	INFO		of		keys	with of		emicolon-separated series alues in the format:	5
	FORMA ACTUA	T L_SAMPI			_		for each o rder of F	of the samples ORMAT	


2017-05-28 ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools

Always quality control samples first

- Sequencing: quality scores
- Sample quality: molecule length, DNA damage, PCR replicates
- Sample purity: environmental / sample contamination
- Completeness of coverage / fraction bases uncovered
- Sex check: Alignments in Y unique regions? X chromosome heterozygosity?
- Relatedness/kinship estimates?
- Agreement with inheritance model?

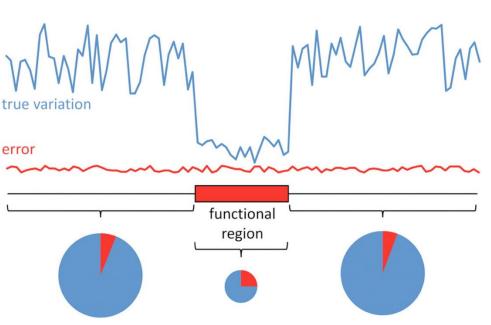
a-b \sim 0 a-c/d \sim 1/2 Relatedness: a-e/f \sim 1/4, e-d \sim 1/4 e-f \sim 1/8

Measures of relatedness

• Tools like bcftools, PLINK, KING allow to test sex and relatedness

Relationship	R	Kinship
identical twins	1.0000	0.5000
parent-offspring	0.5000	0.2500
full siblings	0.5000	0.2500
grandparent-grandchild	0.2500	0.1250
halfsiblings	0.2500	0.1250
aunt/uncle-nephew/niece	0.2500	0.1250
double first cousins	0.2500	0.1250
great grandparent-great grandchild	0.1250	0.0625
first cousins	0.1250	0.0625
second cousins	0.0313	0.0157
third cousins	0.0078	0.0039
fourth cousins	0.0020	0.0010

Which variants to trust?



Targeted vs shotgun sequencing

- Targeted sequencing with larger variation in coverage
- Check targeted regions are covered at a minimum depth
- Candidate variants: always check genotype quality, allele balance, strand balance, sequencing depth
- Systematic errors, long variants and structural variants
 - Collect/ask for list of commonly observed variants
 - Note that intermediate-sized (~30-100bp) InDels are the most difficult to call from short-read technologies
 - Check for overlap with known structural variants/segmental duplications

Sanity checks for individual variants

- Variants with high impact functional annotation are enriched for false positives
- Check overlap with segmental duplications or repetitive elements
- Study frequency vs. database frequency
 - Common allele in study absent from public database, or rare variant in study at high-frequency in database
 - Hardy-Weinberg equilibrium for homozygote and heterozygote carriers (p² + 2pq + q² = 1)

MacArthur and Tyler-Smith 2010 Hum Mol Gen

Overall quality: Known allele frequency spectrum

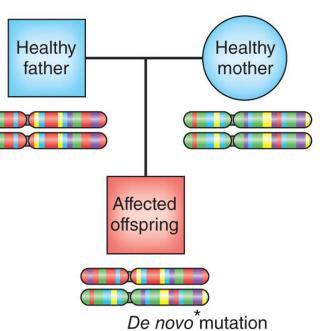
- Vast majority of alleles in any one sample should be common and present in databases
- Most variants in a large sample of people are rare
- Rare/novel variants are overwhelmingly heterozygous
- Number of stop codons, typically ~100 per genome (most are common variants)
- Transition-to-transversion ratio for mammals:
 - Transitions about 2x more frequent than transversions
 - Within coding exons, the ratio is closer to 3:1, as transitions are less likely to change amino acids, random errors yield a ratio of 1:2

Public database coverage

Individual	cSNP calls	# in dbSNP	% in dbSNP	# heterozygous	# homozygous
NA18507 (YRI)	19720	17577	89.1%	12896	6824
NA18517 (YRI)	19737	17326	87.8%	13039	6698
NA19129 (YRI)	19761	17298	87.5%	12845	6916
NA19240 (YRI)	19517	17168	88.0%	12866	6651
NA18555 (CHB)	16047	14894	92.8%	9181	6866
NA18956 (JPT)	16011	14848	92.7%	9132	6879
NA12156 (CEU)	16119	15250	94.6%	10179	5940
NA12878 (CEU)	15970	15051	94.2%	9928	6042
FSS10066 (Eur)	16229	15144	93.3%	10240	5989
FSS10208 (Eur)	16073	15018	93.4%	9966	6107
FSS22194 (Eur)	16094	15128	94.0%	10005	6089
FSS24895 (Eur)	15986	15027	94.0%	9920	6066

→ More variants identified in exomes from African than in European ancestry, larger proportion of European variants covered in public databases

2017-05-28| ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools

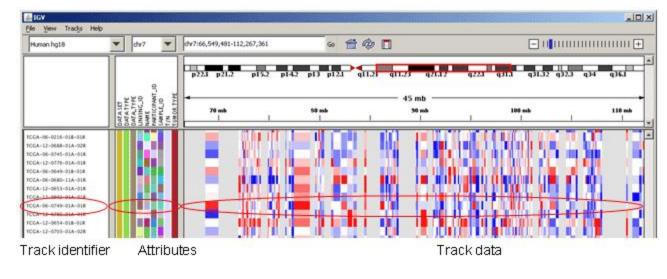

De Novo Mutations and Errors

• Assuming:

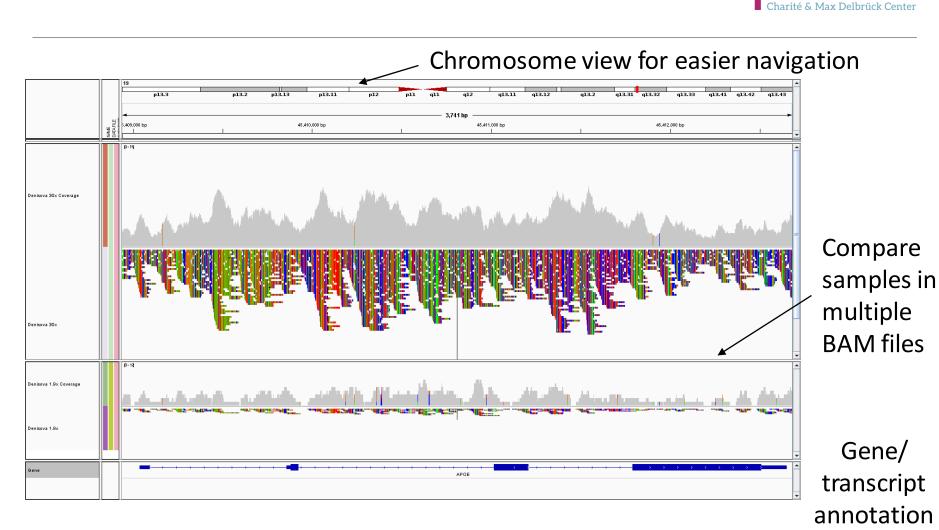
- Mutation rate of 2.5 x 10⁻⁸
- 20 Mbp of captured exome
- Calling false positive rate (false heterozygote) of 1 x 10⁻⁶ (specificity of 99.9999%, Q60)

• We expect:

- ~0.5 actual *de novo* non-synonymous
 variants per proband, and 20 false positives, i.e. FDR = 97.6%
- Not considering false negative variants in parents...

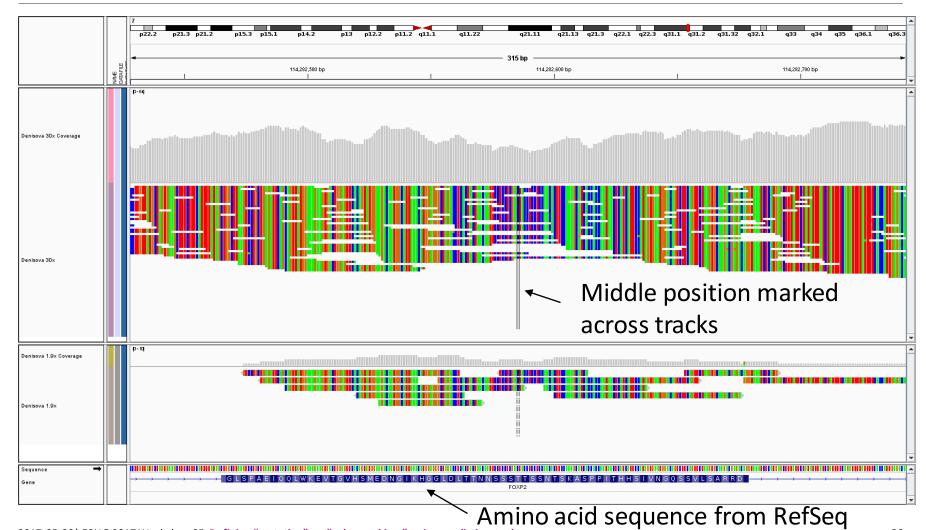

- Verify your variants using a different technology before follow up
- Unless isolated population, unrelated cases frequently have different mutations
- Is gene a likely false positive?
 - Large genes: TTN, USH2A
 - Lots of paralogs/part of gene family: MUC*, ANK*
 - Don't rule out if phenotype makes sense! E.g.
 - *TTN:* dilated cardiomyopathy and muscular dystrophy
 - *MUC1*: medullary cystic, kidney disease
 - *KRT**: ichthyosis, keratoderma, keratosis

Checking underlying alignment files

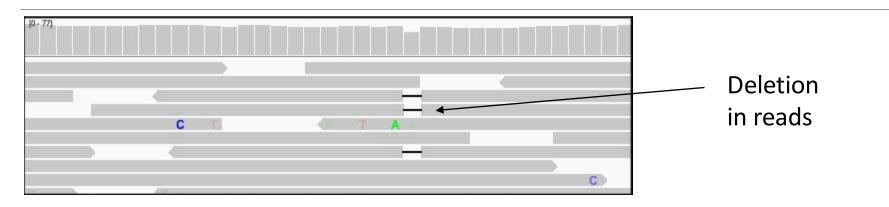


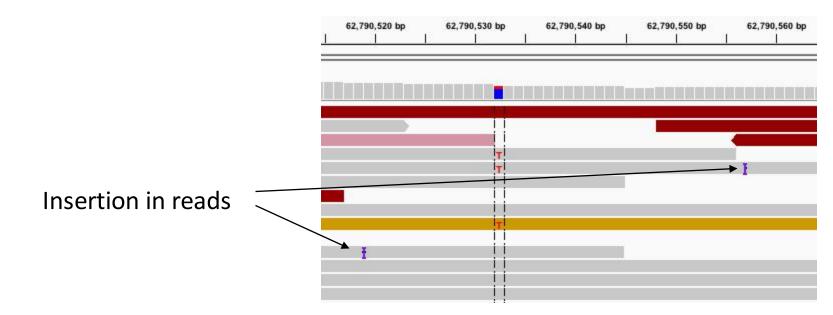
- Integrative Genomics Viewer (IGV)
 - Java-based genome-browser, download/documentation: <u>http://www.broadinstitute.org/igv/</u>
 - Support for diverse data files, e.g. sorted .sam, .bam, .aligned, .psl, .pslx, and .bed, and multiple tracks

J.T. Robinson et al. *Nature Biotechnology* 29, 24–26 (2011)


Integrative Genomics Viewer (IGV)

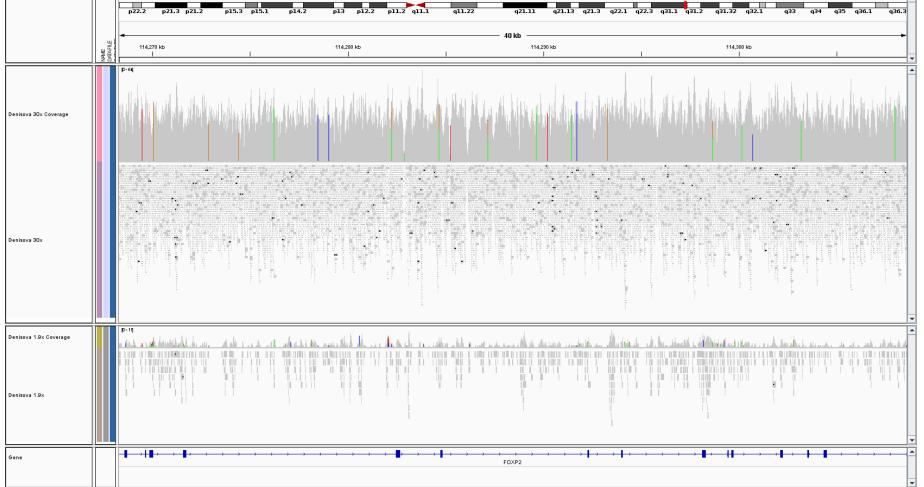
RFRI





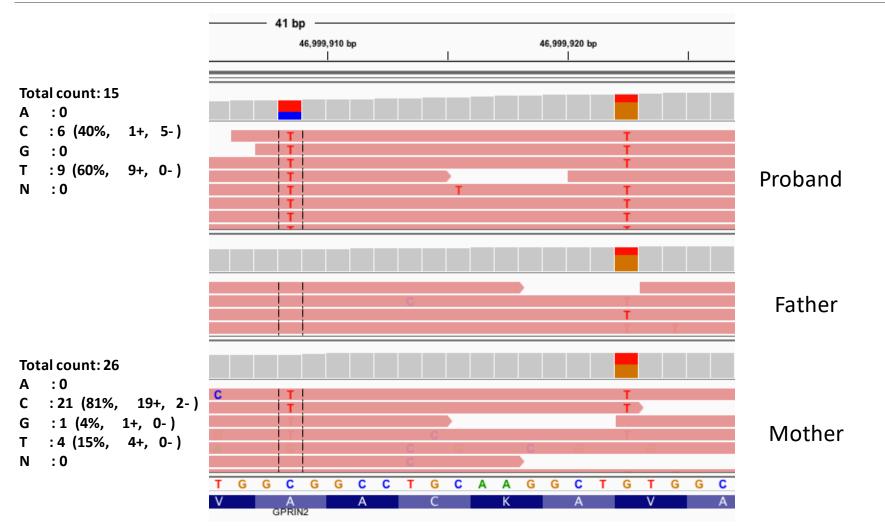
2017-05-28 | ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools

Insertions/deletions

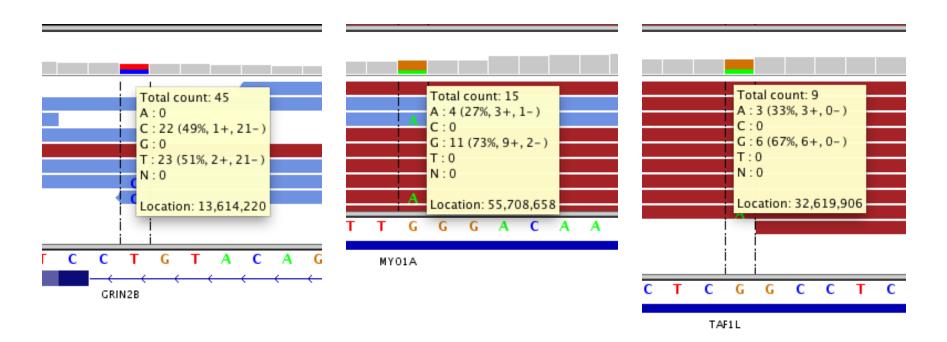


2017-05-28 ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools

http://www.broadinstitute.org/igv/book/export/html/6

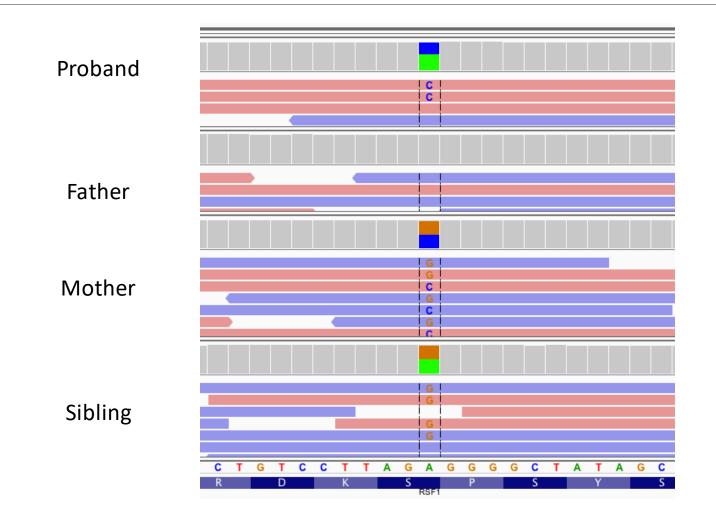

Viewing limit ~40kb

Allelic balance?



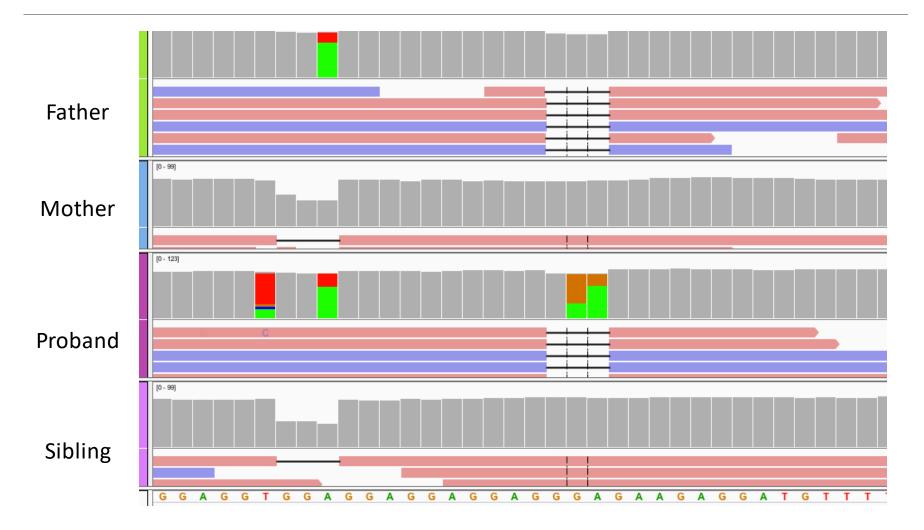
2017-05-28| ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools

Strand balance?

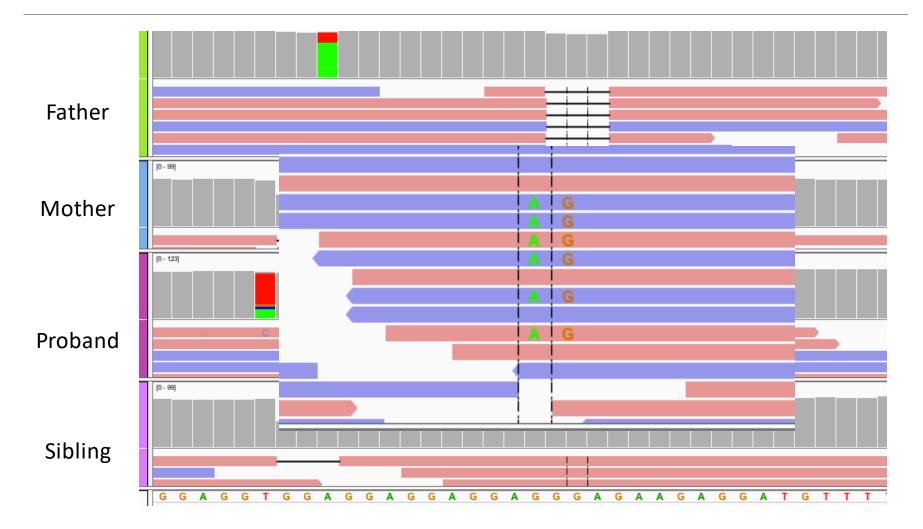


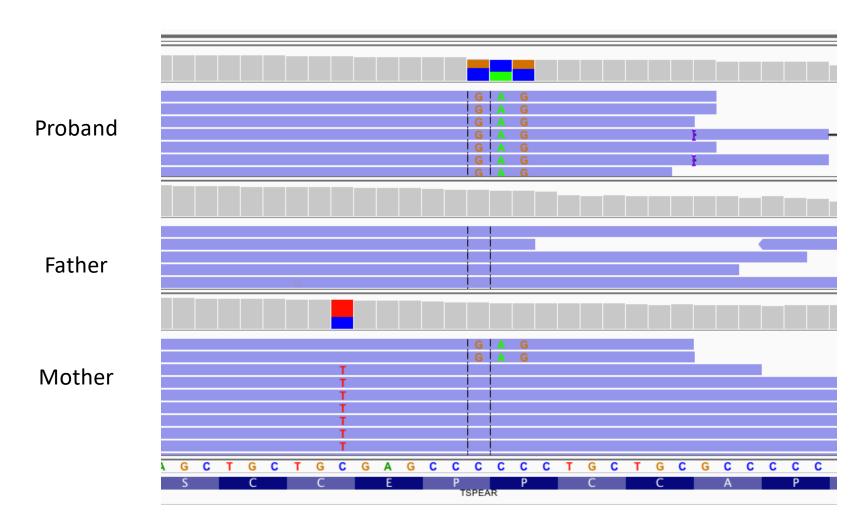
Note: You only expect even sampling from both strands if both strands can make it into your sequencing library and sequencing reaction

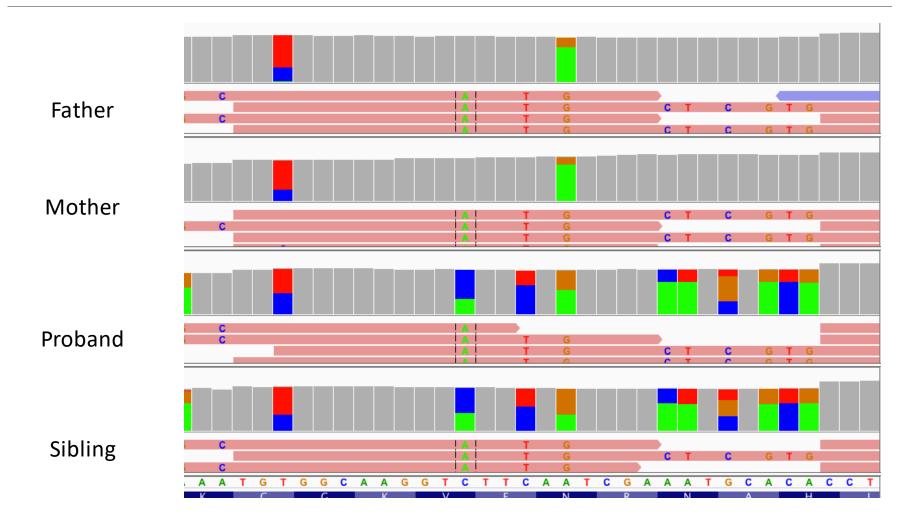
Tri-allelic sites



2017-05-28| ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools


Low complexity regions


Low complexity regions


Low complexity regions (2)

Segmental duplication / assembly issue

ANNOTATION OF VARIANTS

- 1. Gene model sources and genome builds
- 2. Transcript models and predicted variant effects
- 3. HGVS usage and validation
- 4. Variant sources, databases and underlying evidence
- 5. Variant beacons

Human genome builds

- GRCh37 / hg19 was released in 02/2009 and is still widely used
 - Ensembl and UCSC differ in mitochondrial genome sequence
- GRCh38 / hg38 first released 12/2013
 - Extended patch system (now p10, 01/2017)
 - Patches and alternate haplotypes complicate alignment and other algorithms, causing very slow adaptation

GRCh38 updates:

- > 100 assembly gaps closed or reduced
- MT: Cambridge Reference Sequence (rCRS)
- 261 alternate loci
- Centromere model integrated
- 150 Mb increase in non-N bases

Coordinate conversions:

- <u>http://www.ensembl.org/Homo_sapien</u> <u>s/Tools/AssemblyConverter</u>
- <u>https://www.ncbi.nlm.nih.gov/genome</u> /tools/remap
- <u>http://genome.ucsc.edu/cgi-bin/hgLiftOver</u>

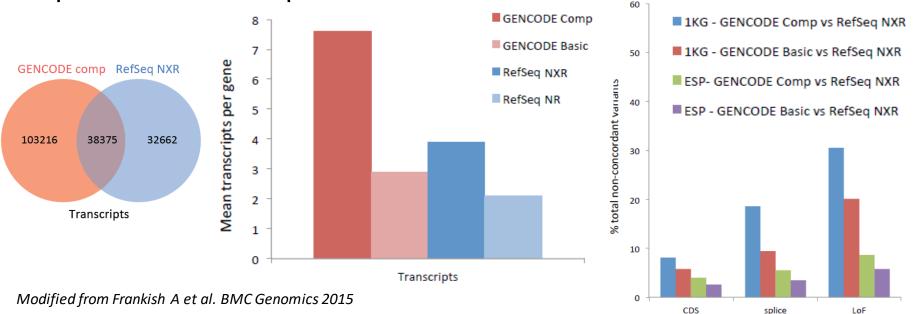
Human genome builds (2)

 Make sure to check for the appropriate genome build before providing coordinates to any tools!

				~							
ar Clin\		PubMed		Nucleotide	Protein						
Search sm Entrez dbSNP	all variations in a	dbSNP or larg		o l variations ii	n dbVar						
	Reference SNP	(refSNP) Cluste	r Report:	rs886038795	** With Pathoger	nic allele **					
a question dbSNP? Try		RefSNF				Allele		HGV	S Name	e	
hing the SNP		Organism:		mo saniens)		SNV:	NC 000015.10:			3	
Q Archive!	M	olecule Type:		inio odpiono,	Variation Class:	single nucleotide variation	NC_000015.9:g	.4870331	5G>A		
		ated in build:			RefSNP Alleles:	C/T (REV)	NG_008805.2:g NM_000138.4:c				
Go		enome Build:		F 1	Allele Origin:		NP 000129.3:p				
L	Validation Status:				Ancestral Allele:	Not available					
e d 🔊					Variation Viewer:	🕎 VarView					
tUs					Clinical Significance:	With Pathogenic allele [ClinVar]					
sm Data Homepage						NA					
ariation											
ces											
cenercs	SNP Details are or GeneView	•	ollowing se mission		esource Diversity	Validation					
Summary	Geneview		111551011			vandation					
BMISSION	Integrated Map	s (Hint: click o	n 'Chr Pos	' to see variant	in the new NCBI variation	on viewer)			1		
ENTATION		Annotation					SNP	Contig	Contig	Neighbor	Mag
	Assembly 🔶	Release	Chr	Chr Pos	Contig	Contig Pa	s to Chr	allele	to Chr	SNP	Meth
				48411118	n	18 25134244	Rev	G	Fwd	view	mapu
D SITES	GRCh38.p7	108	<u>15</u>	day V	NT 010194						

Gene model sources

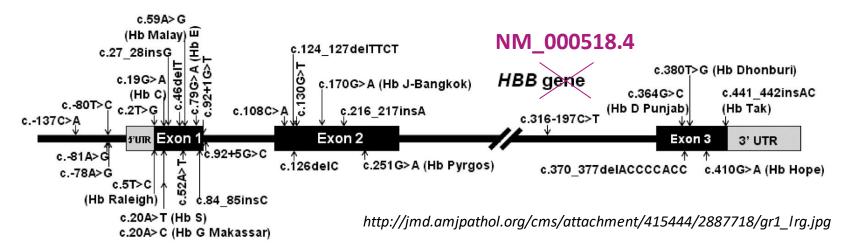
- NCBI (RefSeq), Ensembl (GENCODE), UCSC (knownGenes) distribute independent gene/transcript annotation sets
- Ensembl provides most comprehensive set
- Collaborative consensus coding sequence (CCDS) curates and revises a joined gene/transcript set


	REF+ENS	RefSeq	Ensembl	Match	Overall match [%]
Stopgain (SNV)	15,835	14,183	14,960	13,308	84.04
Frameshift insertion	6,980	5,298	6,495	4,813	68.95
Frameshift deletion	7,491	4,547	7,380	4,436	59.22
Stoploss (SNV)	946	503	906	463	48.94
Splicing	47,878	14,154	45,839	12,115	25.30
Nonsynonymous (SNV)	321,669	291,898	315,592	285,821	88.86

Annotating ~80 million variants in the WGS500 project (doi: 10.1186/gm543)

Transcript models and predicted variant effects

- Annotation sources differ significantly on transcript level
- Be inclusive to not miss a potentially damaging variant
- Never assume that annotations are perfect, if in doubt validate predicted transcript effect



2017-05-28 | ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools

HGVS - usage and validation

- Sequence Variant Nomenclature (<u>http://varnomen.hgvs.org/</u>)
- Frequently used in medical publications, unfortunately with large variation/deviations from standard
- Mostly impossible to computationally process
- If you *must* use it, run validation and conversion tools: <u>mutalyzer.nl</u> / <u>VEP</u>

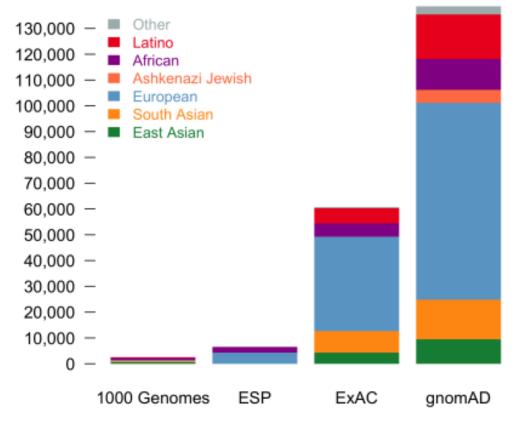
Variant databases

- Many sources for variants around coding sequences: ESP, ExAC and genome-wide:
 1000 Genomes, UK10K, gnomAD, Haplotype Reference Consortium (HRC), Genomics England
- General variant repository for small and large studies: dbSNP
- Structural variants: dbVar, DGV

Exome Aggregation Consortium (ExAC)

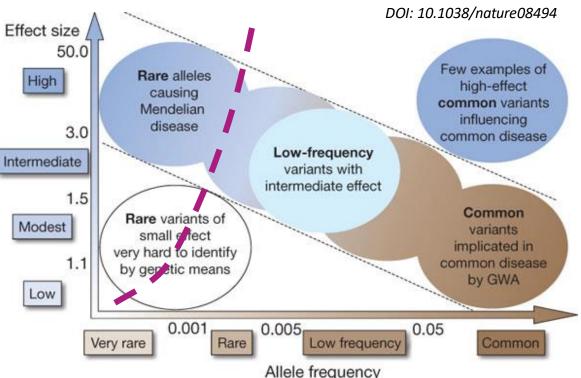
Genome Aggregation Database (gnomAD)

dbSNP


Short Genetic Variations

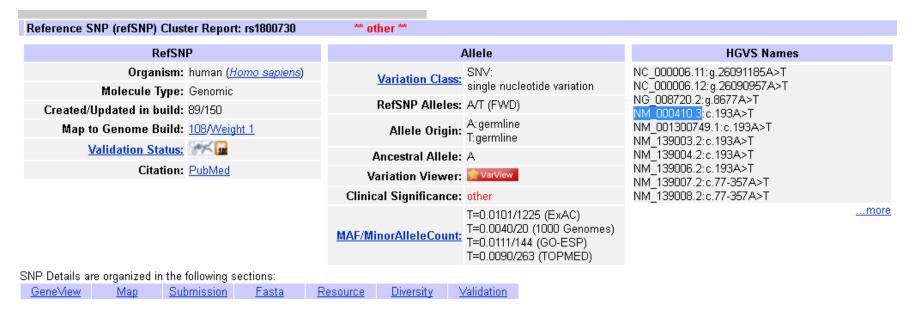
Human populations in variant databases

- Variant data bases are biased towards individuals of European ancestry
- Frequencies
 summaries only
 available for some
 larger populations


https://macarthurlab.org/2017/02/27/the-genome-aggregation-database-gnomad/

Delbrück Center

Databases include disease variants



- 1000 Genome project and others recruited "healthy individuals"
 does not mean that disease alleles are absent!
- gnomAD excludes individuals with severe pediatric diseases
- Late-onset and less severe disease alleles likely present

- > 325M rsIDs, only 130M with frequency information
- rsIDs reference a loci + allele length, not an allele; issues when frequency and genotype information are linked
- Somatic as well as germline, disease variants as well common

Clinical variant sources

TTTTAGTAGCAATTTGTACTGATGGTATGGGGCCAAGAGATATATCT GCCAGAAGAGCCAAGGACAGGTACGGCTGTCATCACTTAGACCTCAC GCAGGGACGOCHGCATCAGCGCTGGGCATAAAAGTCAGGGCAGAGC GCAACCTCCAAHAGACGCTGGTGCATCTGACTCCTGAGGAGAGAGT TGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGGT CTCTTGGGTTTCTGATAGGCACTGACTCTCTCTGCCTATTGGTCTAT

NCBI ClinVar

- Public domain, free
- >261k variants: 39k
 'pathogenic' and 55k 'benign'
- Clinical labs major submitters
- Goal: present agreement or conflict in clinical significance assignment
- Linking underlying evidence

Human Gene Mutation Database

- Commercial (Qiagen)
- Curated: inherited disease
- >203k mutations (2017.1)
- GWAS and associated variants
- Reference published evidence
- Free academic version with fewer variants (2 year delay)

https://www.ncbi.nlm.nih.gov/clinvar/

S NCBI 🛛 Resources 🖸	How To 🗵	<u>My NCBI</u> Sign Out
ClinVar	ClinVar Search ClinVar for gene symbols, H	GVS expressions, conditions, and Search
	Advanced	Help
Home About 🕶 A	Access 🔻 Help 👻 Submit 👻 Statistics 💌 FTP	•
):c.5503_5564del62 (p.Arg1835Thrfs)	1 Affected gape
Variation ID: 🕜 Review status: 🕜 🤍 🤇	55602 \star \star \star \star reviewed by expert panel	1 Affected gene BRCA1, DNA repair associated (BRCA1) [Gene - OMIM - Variation Viewer]
nterpretation O	Got	Haploinsufficiency - <i>Sufficient evidence for</i> dosage pathogenicity (Nov 16, 2015)
nterpretation ②		Triplosensitivity - <i>No evidence available</i> (Nov 16, 2015)
Clinical significance:	Pathogenic	Q Search ClinVar for variants within BRCA1
ast evaluated:	Apr 22, 2016	Q Search ClinVar for variants including BRCA1
Number of submission(s):	3	
Condition(s):	 Familial cancer of breast [MedGen - Orphanet - OMIN Breast-ovarian cancer, familial 1 [MedGen - OMIM] 	/] Variant frequency in dbGaP 🝞
See supporting ClinVar reco	ards 🔽	No dbGaP data has been submitted for this

SNCBI Resources	How To 🗵				Sian in	to NCBI			
ClinVar	ClinVar Search ClinVar for gene symbols, Advanced 	HGVS expressions, conditions, and	nore	Se	arch	Help			
Home About 🔻	Access 💌 Help 💌 Submit 💌 Statistics 💌 FT	P 🔻							
NM_000410.3(HFE):	c.193A>T (p.Ser65Cys)								
Variation ID: 🔞	11		1 Affected ger	ie					
Review status: 🕜	눚 🚖 🚖 🚖 criteria provided, conflicting interpretatio	ons			MIM - Variation Viewer	r]			
			•	/ar for variants within					
Interpretation 👔		Go to: 🖂		/ar for variants inclu	aing HFE				
Clinical significance: Last evaluated:	<u>Conflicting interpretations of pathogenicity</u> Pathogenic(3);Uncertain significance(2) June 21, 2016		NM_000410.3(HF	- Variant frequency in dbGaP ? NM_000410.3(HFE):c.193A>T (p.Ser65Cys) GRCh37 Chr6:26091186					
Number of submission(s): Condition(s):	5 Hemochromatosis type 1 [MedGen - OMIM]			Called variants	Potential variants				
Condition(s).	Hereditary hemochromatosis [MedGen - OMIM]		Sample count	355 of 12903	1125 of 47856				
See supporting ClinVar rec	ords 🗃	Go to: 🕑	allele. Potential vari of the reads coverin	ants are SRA runs the g the position, and have	o dbGaP that have the varia at display the allele in at lea a 10 or more passing reads	ast 30%			
	fully qualify	ad							
NM_000410.3(HFE):c.193/	Juny qualifi	eu	Browser views						
Allele ID:	A>T (p.Ser65Cys)	ifier!	RefSeqGene	-		_			
Variant type:	single nucleotide variant	-	Variation Viewer	GRCh38 - GRCh37]				
	-		LICSC IGRC638/	0038 - GRCb37/bo1	aı				

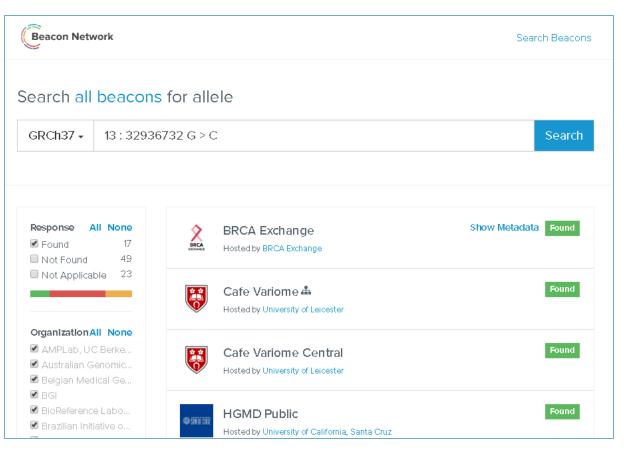
NM 000410.3(HFE):c.193A>T (p.Ser65Cys)

		Browser views	
Allele ID:	15050	RefSeqGene	
Variant type:	single nucleotide variant	Variation Viewer [GRCh38 - GRCh37]	
Cytogenetic location:	6p22.2	UCSC [GRCh38/hg38 - GRCh37/hg19]	
Genomic location:	 Chr6: 26090957 (on Assembly GRCh38) Chr6: 26091185 (on Assembly GRCh37) 	Related information	
Protein change:	S65C	dbSNP	
HGVS:	 NG_008720.2:g.8677A>T 	Functional Class	
	 NM_000410.3:c.193A>T NN_000410.3:c.193A>T 	Gene	
	 NM_139007.2:c.77-357A>T NP_000401.1:p.Ser65Cys 	GTR (all)	
	 NC_000006.12:g.26090957A>T (GRCh38) 	MedGen	
	 LRG_748t1:c.193A>T NC_000006.11:g.26091185A>T (GRCh37) 	OMIM	
	NG_008720.1:g.8677A>T	PMC	
	 Q30201:p.Ser65Cys 	PubMed	
	 LRG_748p1:p.Ser65Cys LRG_748:g.8677A>T 	PubMed (calculated)	
	less	Related genes (specific)	
Links:	 UniProtKB: <u>Q30201#/AR_004397</u> OMIM: <u>613609.0003</u> dbSNP: <u>1800730</u> 		
NCBI 1000 Genomes Brow	ser: <u>rs1800730</u>		
Molecular consequence:	 NM_000410.3:c.193A>T: missense variant SO:0001583 NM_139007.2:c.77-357A>T: intron variant SO:0001627 		
Allele frequency:	• GO-ESP 0.01107 (T)		

• GMAF 0.00400 (T) ExAC 0.01009 (T)

.

	Summary evidence	Supporting observations					(
ermline							,				
						Filter:					
Clinical significance (Last evaluated)	Review status (Assertion method)	Collection method	Condition(s) (Mode of inheritance)	Origin	Citations	Submitter - Study name	Submission accession				
Uncertain significance (Jun 21, 2016)	criteria provided, single subr <u>Invitae Variant Classific</u> <u>Sherloc (09022015)</u>		Hemochromatosis type 1 [<u>MedGen</u> <u>OMIM]</u>	germline		Invitae	SCV000254532				
Uncertain significance (Jun 14, 2016)		CSL Variant Classification testing		CSL Variant Classification testing he		ICSL Variant Classification testing		germline	 <u>PubMed (12)</u> [See all records that cite these PMIDs] <u>BOOKSHELF</u> (NBK1440) 	Illumina Clinical Services Laboratory.Illumina	SCV000461884
Pathogenic (Apr 15, 1999)	no assertion criteria provideo	l literature only	Hemochromatosis type 1 [<u>MedGen</u> <u>OMIM]</u>	germline	 PubMed (2) [See all records that cite these PMIDs] 	<u>OMIM</u>	SCV000020171				
Pathogenic (Nov 11, 2014)	no assertion criteria provideo	d clinical testing	Hemochromatosis type 1 [<u>MedGen</u> <u>OMIM]</u>	germline		Blueprint Genetics	SCV000206974				
Pathogenic (Sep 17, 2015)	no assertion criteria provideo	l literature only	Hemochromatosis type 1 [<u>MedGen</u> <u>OMIM]</u>	germline	PubMed (1) [See all records that cite this PMID] Other citation	<u>GeneReviews</u>	SCV000245790				


mli	https://www.ncbi.nlm.nih.gov/books/NBK1440/	
	[]	
ica ific	At least 28 distinct pathogenic variants have been reported; most are	
t uat	missense or nonsense. Two missense variants account for the vast majority of	
ert	disease-causing alleles in the population:	e
12	• p.Cys282Tyr removes a highly conserved cysteine residue that normally	
ert	forms an intermolecular disulfide bond with beta-2-microglobulin, and	ε
n 14	thereby prevents the protein from being expressed on the cell surface.	
	• p.His63Asp may alter a pH-dependent intramolecular salt bridge, possibly	
hog r 15	affecting interaction of the HFE protein with the transferrin receptor.	1
	In addition, p.Ser65Cys has been seen in combination with p.Cys282Tyr in	
nog 7 11	individuals with iron overload [Bacon et al 2011]. Unlike individuals	9
100	heterozygous for the common pathogenic variants, no p.Ser65Cys/wt	7

Variant beacons: beacon-network.org

 Web services trying to balance desire of sharing genomic data with need for data protection – only one question:

> Does a specific variant exist in your database?

https://beacon-network.org//#/search? pos=32936732&chrom=13&allele=C&ref=G&rs=GRCh37

VARIANT FILTERING

Mendelian disorders

- rare variant
- severe effect
- early onset / high penetrance

Search for known disease mutations

TTTTAGTAGCAATTTGTACTGATGGTATGGGGCCAAGAGATATATCT GCCAGAAGAGCCAAGGACAGGTACGGCTGTCATCACTTAGACCTCAC GCAGGGACGOCAGGAGCCAGGGCTGGGCATAAAAGTCAGGGCAGAGC GCAACCTCAAACAGACAGCATGGTGCATCTGACTCCTGAGGAGAGAGT TGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGGT CTCTTGGGTTTCTGATAGGCACTGACTCTCTCTGCCTATTGGTCTAT

Caveats

- ClinVar is not comprehensive
- HGMD is expensive
- many wrong entries in both (revealed by ExAC etc.)
- do not include novel mutations
- the phenotype should match yours!

Exclude harmless polymorphisms

1000 Genomes Project:

- 2,500 genomes
- no severe Mendelian disorders

ExAC:

- 60,000 exomes
- no severe Mendelian disorders

gnomAD:

• 120,000 exomes + 15,000 genomes

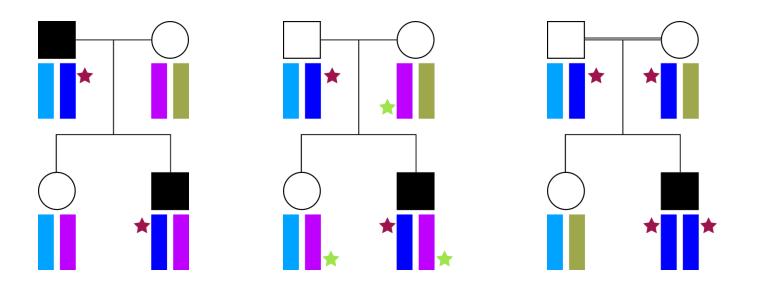
Exome Aggregation Consortium (ExAC)

Genome Aggregation Database (gnomAD)

Exclude harmless polymorphisms

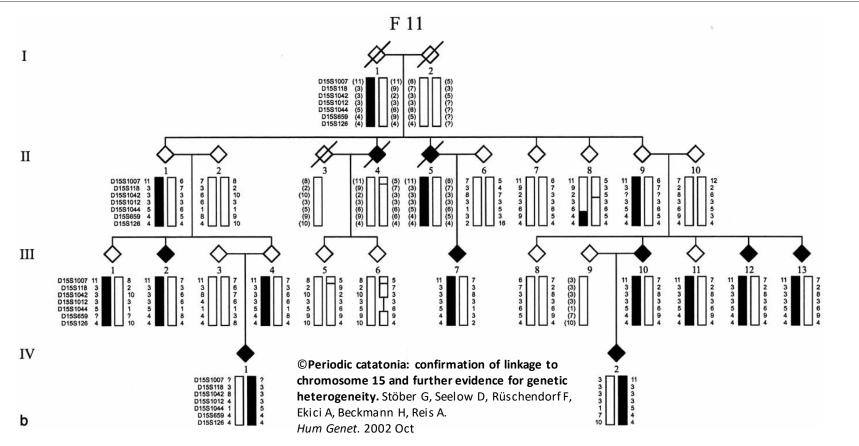
Caveats:

- dbSNP contains disease mutations
- → do not filter for dbSNP IDs!
- 'private' or population-specific variants are not covered
- gnomAD is not limited to 'healthy' individuals


Exome Aggregation Consortium (ExAC)

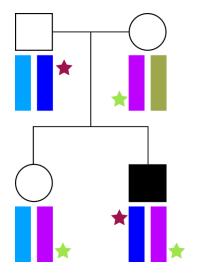
Genome Aggregation Database (gnomAD)

Consider inheritance



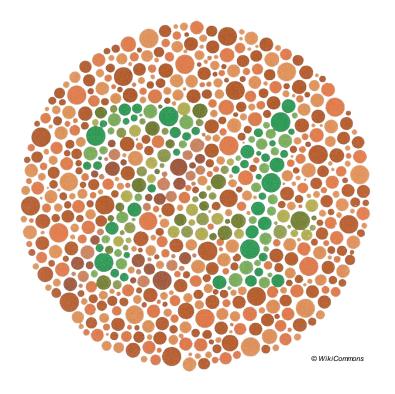
- fully penetrant 'dominant alleles' should not be present in healthy indivuals
- 'common' disease mutations occur in heterozygous state
- → adapt filtering strategy to MOI
- → recessive disorders: filter for homozygosity, not for allele frequencies

Consider incomplete penetrance



- allele carriers may be healthy
- → allow higher allele frequencies in healthy individuals

Consider compound heterozygosity



• patients do not have to be homozygous

→ do not exclude heterozygous genotypes

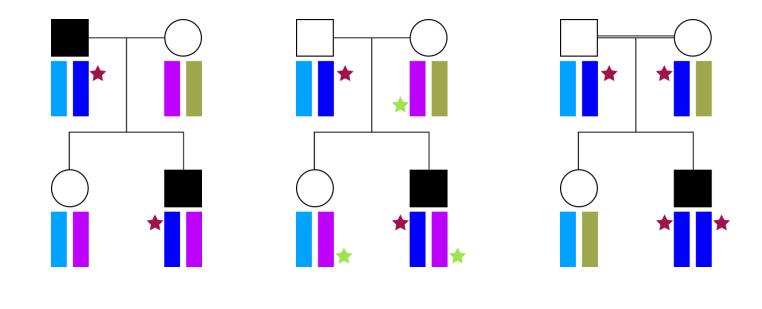
Consider the disease frequency

- alleles causing 'common' recessive monogenic diseases are not rare
- → do not filter too strictly (or only for homozygosity)
- → use different thresholds, depending on disease frequency

Create an in-house database

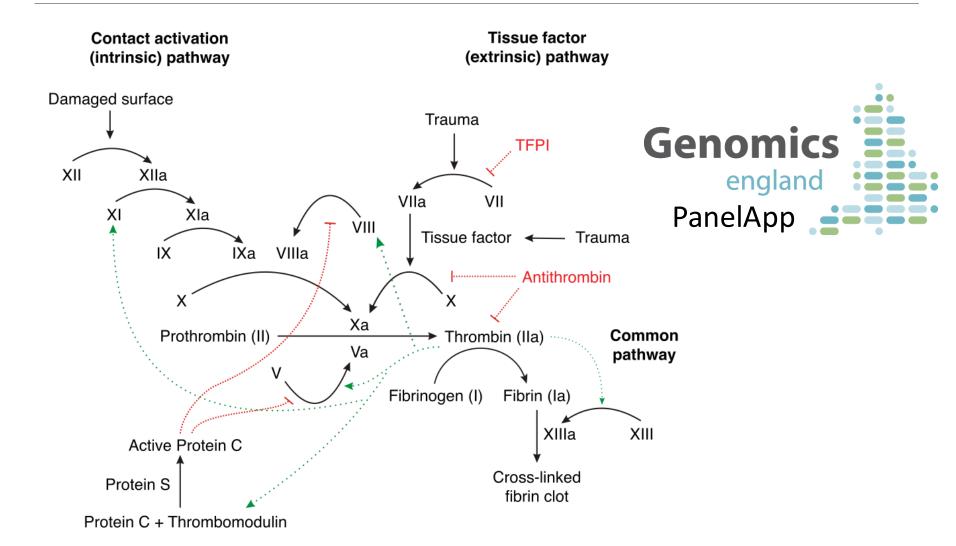
Filter against your own data!

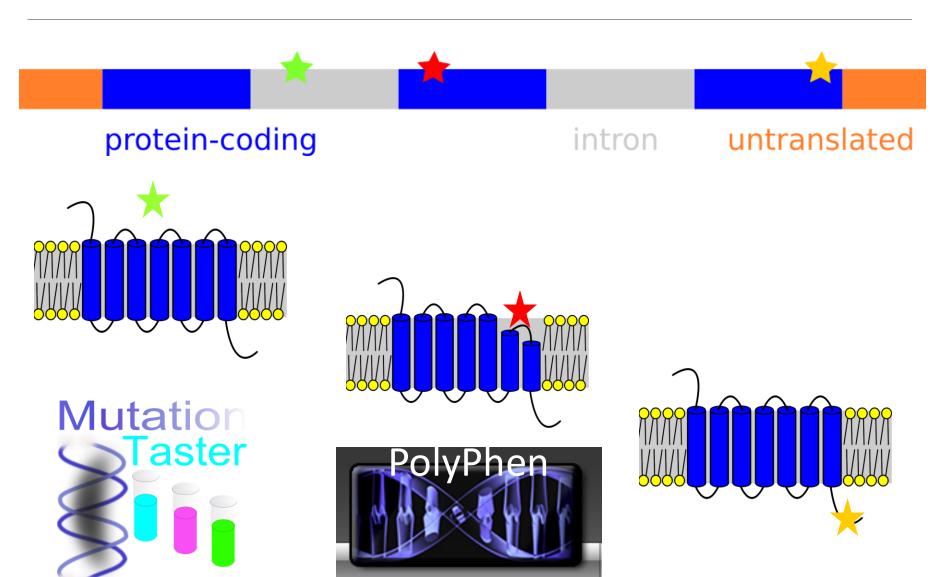
- removes population- (or family-) specific variants
- reveals alignment artefacts

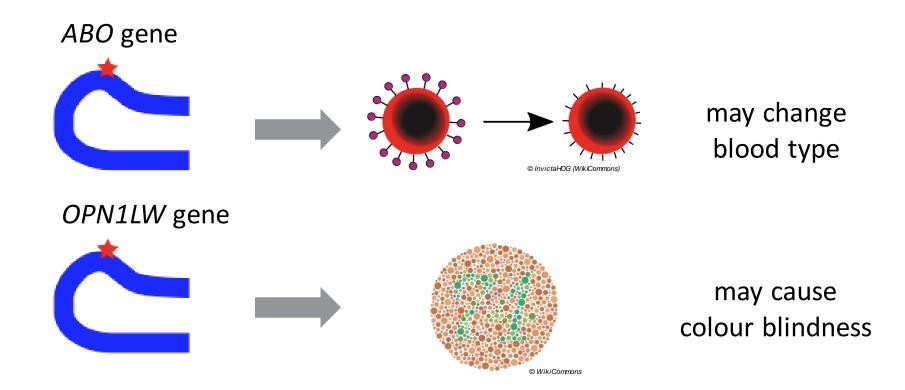

Limit to disease loci

	n con the co		en de la company A de la company de	a an ann an an an an A le Bhan teachta			and the state		nana <mark>na ana</mark> 1 min ta Cha						n 🖷		randali ir		iii M	
1	2	3	4	5	6 7	,	8	9	10	11	12	13	14	15	16	17	18 19	20 2	1 22	
																				1.0 x ma>
																			_	0.9 x ma>
																			_	0.8 x ma>
																			_	0.7 x ma>
			1																	0.6 x ma>
														1						
						1 h .		. 1	lluh			l ill								
															L.					
ļi '			II.			Į Ţ	II												ľ	

Check for suitable genotypes

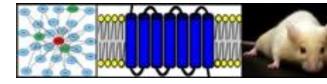



Limit to candidate genes / gene panels


Limit to 'damaging' variants

Consider the disease / phenotype

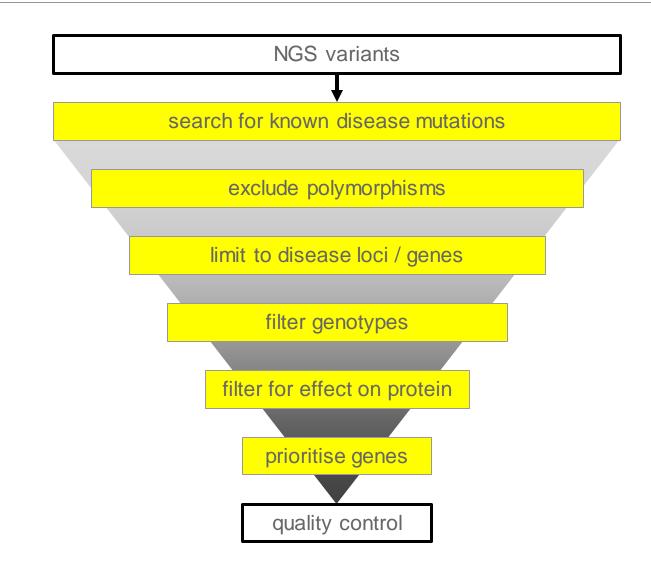
Gene prioritisation tools



ENDEAVOUR

GeneWalker

Phenomizer

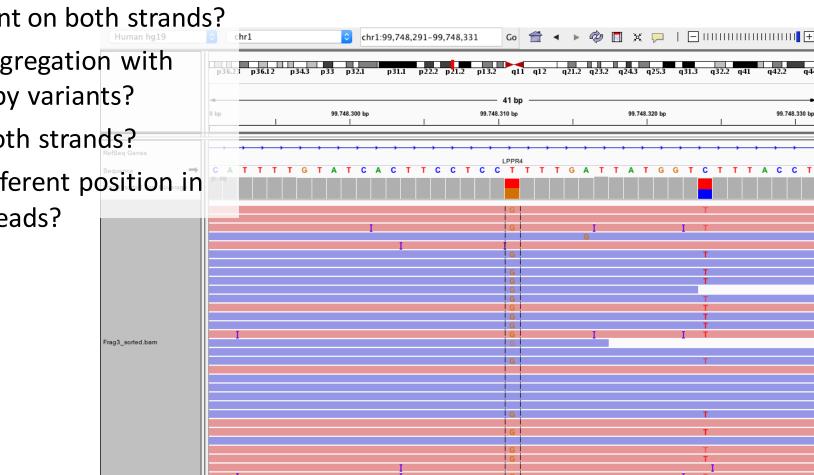


GeneDistiller

Variant filtering in a nutshell

Quality control: inspect your variant

- is it sufficiently covered?
- is it (frequently) found in polymorphism databases?
- is it reported in ClinVar / HGMD?
- do you see it in the parents?
- do you see it in other samples?


Test for co-segregation

- reveals incompatibilities with the pedigree
- inevitable for suspected compound heterozygosity

Quality control: IGV (Broad Institute)

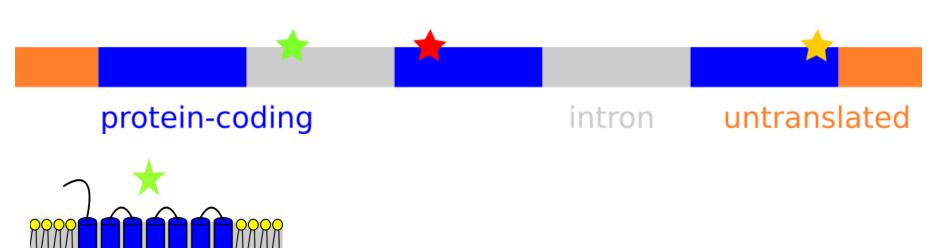
- sufficient coverage?
- variant on both strands?
- co-segregation with nearby variants?
- on both strands?
- at different position in the reads?

After the break

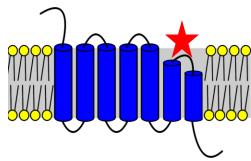
- Assessment of variants within protein-coding genes
- A use case for the identification of disease mutations
- Predicting the effect of non-coding variants

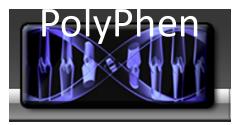
SHORT BREAK

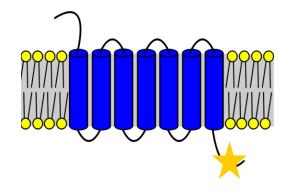
VARIANT ASSESSMENT


Mendelian disorders

- rare variant
- severe effect
- early onset / high penetrance




Consequences of variants



Non-coding variants within genes

splice site

- loss/gain of exons -> affects the CDS
- frameshift -> affects the CDS
- transcript lost/misregulated

promoter / TSS

• gene/transcript lost/misregulated

UTRs

- polyadq signal lost
- miRNA binding sites changed
- transcript misregulated

Coding variants within genes

may affect

- splicing
- functional domains
- structure
- activity

can cause

- premature termination codon -> NMD
- frameshift
- loss/gain/substitution of amino acids

not limited to missense/nonsense variants

Predicting the disease-causing effect of DNA variants with MutationTaster

Jana Marie Schwarz

MutationTaster evaluates disease-causing potential of sequence alterations.

Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. *Nat Methods*. 2010 **MutationTaster2: mutation prediction for the deep-sequencing age.** Schwarz JM, Cooper DN, Schuelke M, Seelow D. *Nat Methods*. 2014

mutation tosting

- documentation | FAQs
- single query
- <u>query chromosomal positions</u>
- QueryEngine
- MutationDistiller (public beta)
- RegulationSpotter (public beta)
- other applications | team

Gene	SOD1 genesymbol, NCBI Entrez or Ensembl ID show available transcripts
Transcript	ENST0000270142 Ensembl transcript ID clear input Choose the transcript: • ENST00000270142 (protein_coding, 966 bases) NM SOD1 • ENST00000389995 (protein_coding, 865 bases)
Position / snippet refers to	 coding sequence (ORF) transcript (cDNA sequence) gene (genomic sequence)
Alteration	all types by sequence
	C[A/G]TGTTCATGAGTTTGGAGATAATACAGCAGGCTGT enter a few bases around your alteration Format: ACTGTC[A/7] GTGTF A substituted by 7 ACTGTC[A/7] GTGTF AG substituted by 7 ACTGTC[AGT/] GTGTF AG substituted by 7 ACTGTC[ACGT/] GTGTF ACGT deleted ACTGTC[-/AA] GTGTF AA inserted single base exchange by position enter position and new base A
	insertion or deletion by position
	enter positions of last wild type base before alteration first wild type base after alteration and the inserted bases (if applicable)
Analysis name (optional)	SOD1_ALS

continue

Current build: GRCh37 / Ensembl 84

Supported by the SFB665

http://www.mutationtaster.org/

mutation t@sting

documentation | FAQs

- single query
- query chromosomal positions
- QueryEngine
- MutationDistiller (public beta)
- RegulationSpotter (public beta)
- other applications | team

Gene

Transcript

Position / snippet refers to Alteration

genesymbol, NCBI Entrez or Ensembl ID show available transcripts

ENST00000270142 Ensembl transcript ID clear input

Choose the transcript:

SOD1

- ENST00000270142 (protein_coding, 966 bases) <u>NM_000454</u>
- ENST00000389995 (protein_coding, 865 bases)
- coding sequence (ORF)
 transcript (cDNA sequence)

all types by sequence

C[A/G]TGTTCATGAGTTTGGAGATAATACAGCAGGCTGT enter a few bases around your alteration

Format:

SOD1_ALS

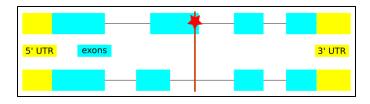
ACTGTC[A/7] GTGTF ACTGTC[AG/7] GTGTF	A substituted by 7 AG substituted by 7
ACTGTC[ACGT/-] GTGTF	ACGT deleted
ACTGTC[-/AA] GTGTF	AA inserted

single base exchange by position

enter position	
and new base	

insertion or deletion by position

enter positions of	
last wild type base before alteration	
first wild type base after alteration	
and the inserted bases	
	(if applicable)


Analysis name (optional)

continue

Current build: GRCh37 / Ensembl 84

Supported by the SFB665

http://www.mutationtaster.org/

documentation

hyperlink

Alteration SOD1_ALS

Prediction disease causing

Model: simple_aae, prob: 0.999999999993143 (classification due to ClinVar, real probability is shown anyway) (explain)

summary

Summary

- amino acid sequence changed
- known disease mutation at this position (HGMD CM930680)
- known disease mutation: rs121912443 (pathogenic)
- protein features (might be) affected

analysed issue name of alteration	<u>analysis result</u> SOD1 ALS	link to the IGV
alteration (phys. location)	chr21:33036170A>G show variant in all transcripts IGV	
HGNC symbol	SOD1	
ExAC LOF metrics	LOF: 0.44, misssense: 2.34, synonymous: -0.11	
Ensembl transcript ID	ENST00000270142	ExAC LOF metrics
Genbank transcript ID	NM 000454	EXAC LOT MICTICS
UniProt peptide	<u>P00441</u>	
alteration type	single base exchange	
alteration region	CDS	
DNA changes	c.140A>G g.4236A>G	
AA changes	H47R Score: 29 <u>explain score(s)</u>	
frameshift	no	
length of protein	normal	
known variant	Reference ID: <u>rs121912443</u> Allele 'G' was neither found in <u>ExAC</u> nor <u>1000G</u> . known disease mutation: rs121912443 (pathogenic for <i>Amyotrophic lateral sclerosis type</i> 1 <i>not</i> known disease mutation at this position, <u>please check HGMD for details</u> (HGMD ID CM930680)	provided) dbSNP NCBI variation viewer
regulatory features	H3K79me2, Histone, Histone 3 Lysine 79 di-methylation H3K4me1, Histone, Histone 3 Lysine 4 Mono-Methylation	

Essentiality or intolerance scores for genes

ExAC LoF / pLI

- intolerance to loss-of-function variants
- negative: gene seems to be tolerant to mutations
- positive: mutations more likely to cause disease (ALS1 can be AR and AD!)

subRVIS (Residual Variation Intolerance Score)

• including protein domains

phyloP / phastCons	PhyloP	PhastCons			
	(flanking) 5.162	1			
		0.996			not restricted to non-
	(flanking) -2.023	0.059			
	explain score(s) and/or	inspect your position	(s) in <u>in UCSC Genome Bro</u>	wser	synonymous variants
splice sites	no abrogation of pot	tential splice sites			synenymeds variants
distance from splice site	N/A				
Kozak consensus sequence altered?	no				
conservation protein level for non-synonymous changes protein features	species Human mutated Ptroglodytes Mmulatta Fcatus Mmusculus Ggallus Trubripes Drerio Dmelanogaster Celegans Xtropicalis start (aa) end (aa) f	match not conserved all identical all identical	gene ENSPTRG00000013847 ENSPTRG0000001711 ENSFCAG0000002225 ENSMUSG00000022962 ENSGALG00000015844 ENSTRUG0000008179 ENSDARG00000043848 FBgn0003462 WBGene00004933 ENSXETG0000007350	47 I K 47 I K 47 I T 58 I T 47 I T 69 I K 47 I T 47 V C 72 V S	Inment GLTEGLHGFHVHEFGDNTAGCT GLTEGLHGFRVHEFGDNTAGC GLTEGLHGFIVHQFGDNTQGC GLTEGEHGFIVHQFGDNTQGC GLTEGQHGFIVHQFGDNTQGC GLSDGDHGFIVHEFGDNTNGC GLTPGEHGFIVHAFGDNTNGC GLAKGLHGFIVHAFGDNTNGC GLAAGKHGFIIHEKGDTGNGC
		STRAND METAL Copper; cata	lost alytic. lost		
AA sequence altered	yes				
position of stopcodon in wt / mu CDS	465 / 465				
position (AA) of stopcodon in wt / mu AA sequence	155 / 155				
position of stopcodon in wt / mu cDNA	613 / 613				
poly(A) signal	N/A				
position of start ATG in wt / mu cDNA	149 / 149				
chromosome	21				
strand	1				
last intron/exon boundary	505				
theoretical NMD boundary in CDS	306				
length of CDS	465				
coding sequence (CDS) position	140				
cDNA position	288				

Protein domains & conservation

conservation	species	match	gene	aa alignment
protein level for non-synonymous changes	Human			47 IKGLTEGLHGFHVHEFGDNTAGCT
	mutated	not conserved		47 I K G L T E G L H G F R V H E F G D N T A G C
	Ptroglodytes	all identical	ENSPTRG0000013847	47 I K G L T E G L H G F 🔤 V H E F G D N T A G C
	Mmulatta	all identical	ENSMMUG0000001711	47 I T G L T E G L H G F 🔤 V H Q F G D N T Q G C
	Fcatus	all identical	ENSFCAG0000002225	58 I T G L T E G E H G F 🔤 V H Q F G D N T Q G C
	Mmusculus	all identical	ENSMUSG0000022982	47 I T G L T E G Q H G F U V H Q Y G D N T Q G C
	Ggallus	all identical	ENSGALG0000015844	47 I T G L S D G D H G F V H E F G D N T N G C
	Trubripes	all identical	ENSTRUG0000008179	69 I K G L T P G E H G F 🗄 V H A F G D N T N G C
	Drerio	all identical	ENSDARG0000043848	47 I T G L T P G K H G F U V H A F G D N T N G C
	Dmelanogaster	all identical	FBgn0003462	47 V C G L A K G L H G F U V
	Celegans	all identical	WBGene00004933	72 V S G L A A G K H G F I I H E K G D T G N G C
	Xtropicalis	all identical	ENSXETG00000007350	48 I Y G L T D G K H G F 🔤 I H E F G D N T N G C
protein features	start (aa) end (aa) f	eature details		
		STRAND	lost	
		METAL Copper; cat		
	7/ 4/ 1	Copper, car	alytic. lost	

Phylogenetic conservation

phyloP / phastCons		PhyloP	PhastCons
	(flanking)	5.162	1
		4.283	0.996
	(flanking)	-2.023	0.059
	explain score(s) and/or	inspect your position(s) in in UCSC Genome Browser

GERP (genomic evolutionary rate profiling)

• conservation of bases in different species

PhastCons

• multibase elements

phyloP

 'detection of lineage-specific conservation or acceleration' (more in the non-coding part)

A non-coding example from ClinVar

Uncertain significance (3) Likely pathogenic (0) Pathogenic (22)

Risk factor (0)

Review status

Practice guideline (0) Expert panel (1) Multiple submitters (1) Single submitter (2) At least one star (6) Conflicting interpretations (2)

Allele origin

Germline (22) De novo (0) Somatic (0)

Method type

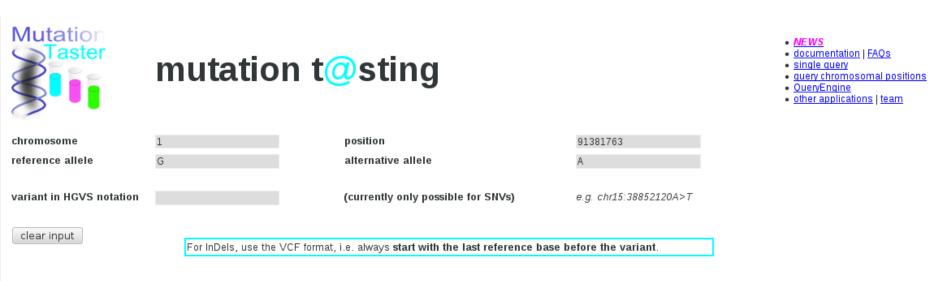
Research (1) Literature only (19) Clinical testing (6)

Molecular consequence

Frameshift (0) Missense (0) Nonsense (0) Splice site (0) ncRNA (1) Near gene (2)

UTR (22)

Search results


ltems: 22

Filters activated: Pathogenic, UTR. <u>Clear all</u> to show 187 items.

		Variation Location	Gene(s)	Condition(s)	Frequency	Clinical significance (Lastreviewed)	Review status
(2)	1.	NM 201269.2(ZNF644):c.*592G> <u>A</u> GRCh37: Chr1:91381763 GRCh38: Chr1:90916206	<u>ZNF644</u>	Myopia 21, autosomal dominant		Pathogenic (Jun 1, 2011)	no assertion criteria provided
	2.	NM 005105.4(RBM8A):c21G>A GRCh37: Chr1:145507646 GRCh38: Chr1:145927447	<u>RBM8A</u>	Radial aplasia- thrombocytopenia syndrome, not provided	GO-ESP:0.02122(A) GMAF:0.00960(A)	Pathogenic (Aug 26, 2014)	criteria provided, single submitter
	3.	NM 022912.2(REEP1):c.*43G>T GRCh37: Chr2:86444180 GRCh38: Chr2:86217057	<u>REEP1</u>	Spastic paraplegia 31, autosomal dominant, not specified	GO-ESP:0.00077(A)	Conflicting interpretations of pathogenicity (Jun 5, 2014)	criteria provided, conflicting interpretations
clear	4.	NM 000249.3(MLH1):c27C>A GRCh37: Chr3:37035012 GRCh38: Chr3:36993521	MLH1	Lynch syndrome, not provided, Hereditary cancer-predisposing syndrome		Uncertain significance (Sep 5, 2013)	reviewed by expert panel
	5.	NM 173546.2(KLHDC8B):c158 C>T GRCh37: Chr3:49209095 GRCh38: Chr3:49171662	KLHDC8B	Hodgkin lymphoma	GMAF:0.00300(T)	Pathogenic (Sep 1, 2009)	no assertion criteria provided

How does it taste?

continue

If you use MutationTaster, please cite our publication: Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014 Apr; 11(4):361-2. Current build: NCBI 37 / Ensembl 66

Pretty bittersweet.

MutationTaster - study a chromosomal position

NEVER press reload or F5 - unless you want to start from the very beginning.

input seems to be ok - now mapping the variant to the different transcripts... found 4 transcript(s)... Querying Taster for transcript #1: ENST00000370440 Querying Taster for transcript #2: ENST0000347275 Querying Taster for transcript #3: ENST0000361321 Querying Taster for transcript #4: ENST0000337393 MT speed 0 s - this script 2.064912 s

Results

genesymbol	prediction	probability	model	prediction problem	splicing	ClinVar	amino acid changes	variant type	dbSNP ID	protein length	file
ZNF644	disease_causing	1	without_aae		affected			single base exchange			show file
ZNF644	disease_causing	1	without_aae		affected			single base exchange			show file
ZNF644	disease_causing	1	without_aae		affected			single base exchange			show file
ZNF644	disease_causing	1	without_aae		affected			single base exchange			<u>show file</u>

MTQE documentation

mutation t@sting

Prediction	disease causing			Model: <i>without_aae</i> , prob: 1	. (explain)	
Summary	 splice site change 	5		<u>hyperlink</u>			
analysed issue				analysis res	sult		
name of alteration	no title						
alteration (phys. location)	chr1:91381763C>A show v	ariant in all tran	scripts IGV				
HGNC symbol	ZNF644						
Ensembl transcript ID	ENST00000361321						
Genbank transcript ID	N/A						
UniProt peptide	N/A						
alteration type	single base exchange						
alteration region	3'UTR						
DNA changes	cDNA.1232G>T g.106067G>T						
AA changes	N/A						
position(s) of altered AA ifAA alteration in CDS	N/A						
frameshift	N/A						
known variant	Variant was neither found in Search ExAC.	n ExAC nor 100	00G.				
regulatory features	H3K9me1, Histone, Histone H3K36me3, Histone, Histone H4K20me1, Histone, Histone	e 3 Ĺysine 36 Ti	ri-Methylation				
phyloP / phastCons	PhyloP PhastC	ons					
	(flanking) 3.515 1						
	4.214 1						
	(flanking) 4.214 1						
	explain score (s) and/or inspect y	our position(s)	in in UCSC Genome Bro	owser			
splice sites					at aa	a 305) splice site change occurs after stopcodon (at aa 306)	
	effect	gDNA position				ection sequence	exon-intron border
	Acc marginally increased			1 (marginal change - not scored)		CGGTTTTTTTTATACTAAAAAGTGGAGGGAGATTTGTTTAA CGGTTTTTTTTATACTAAAAAGTGTAGGGAGATTTGTTTAA	aaaa GTGG
	Acc marginally increased	106058	wt: 0.2456 / mu: 0.251	6 (marginal change - not scored)		: TGGAACGGTTTTTTTTTATACTAAAAAGTGGAGGAGATTTG : TGGAACGGTTTTTTTTTATACTAAAAAGTGTAGGGAGATTTG	tact AAAA
	Donor increased	106072	wt: 0.36 / mu: 0.56			: GAGGGAGATTTGTTT : TAGGGAGATTTGTTT	GGGA gatt
	Donor increased	106060	wt: 0.22 / mu: 0.85			TACTAAAAAGTGGAG TACTAAAAAGTGTAG	CTAA aaag
	Donor marginally increased	106058	wt: 0.9832 / mu: 0.991	3 (marginal change - not scored)		: TATACTAAAAAGTGG : TATACTAAAAAGTGT	TACT aaaa
	Donor gained	106070	0.31		mu:	TGTAGGGAGATTTGT	TAGG gaga
distance from splice site	22						
Kozak consensus sequence altered?	N/A						
conservation	N/A						
protein level for non-synonymous changes							
protein features	N/A						

How?

Once upon in my inbox

Subject: New RX pharmacy

WE NOW have online pharmacy take a lookablepharmacy.com Payments are every Thursday like clockwork, no delays or arrays Our "Low Price Pharmacy Store" design sports a professional array of pharmaceuticals. This is definatly our top converting website. Other product: enlargement pills very popular sextoy

msg me with a valid email for an account

Once upon in my inbox

Subject: New RX pharmacy

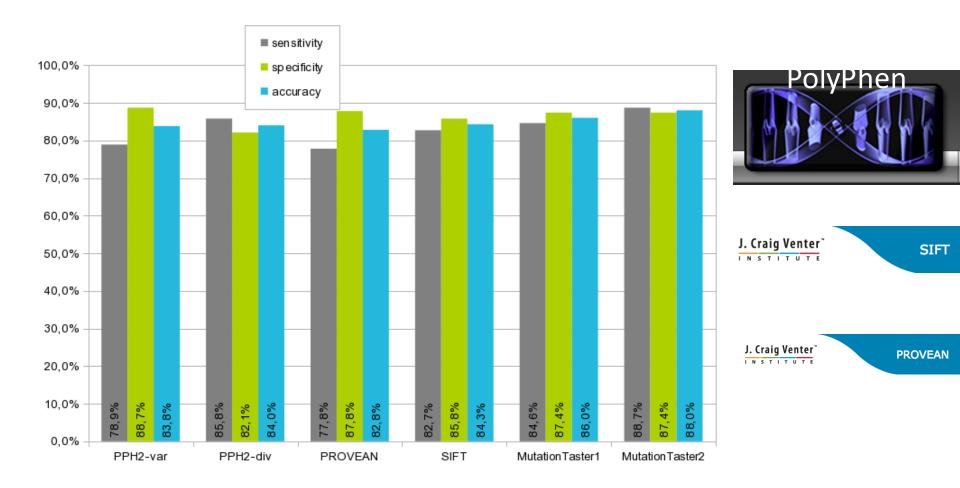
WE NOW have online **pharmacy** take a lookablepharmacy.com Payments are every Thursday like clockwork, no delays or arrays Our "Low Price Pharmacy Store" design sports a professional array of pharmaceuticals. This is definatly our top converting website. Other product: **enlargement pills** very popular **sextoy**

msg me with a valid email for an account

Mozilla Thunderbird uses a Bayes classifier

term	spam	ham
pharmacy	++	Ο
enlargement	++	Ο
pills	++	Ο
sextoy	++	
website	+	+
abstract	-	++
MutationTaster	_	++

...and so does MutationTaster


Test result	mutations	polymorph.
abrogation of a splice site	49.5%	0.06%
loss of a transmembrane domain	7.3%	4.5%
loss of a disulfid bridge	2.9%	0.1%

trained with

DM from 20+ persons HGMD© Pro homozygous in 1000G

Comparison of different tools

2 x 1,100 non-synonymous variants

Do not rely on predictions - include background knowledge

	MutationTaster2	РРН	SIFT	PROVEAN
all predic	ctions			
FP	6	376	295	331
TN	2771	776	2482	2446
FPR	0.2%	32.6%	10.6%	11.9%
1152 var	riants predicted by a	all tools		
FP	6	376	274	290
TN	1146	776	878	862
FPR	0.5%	32.6%	23.8%	25.2%

exome of a healthy individual all homozygous non-synonymous variants

Combination scores

- integrate different prediction tools
- integrate further data (may overlap!)
- also used/created by the all-in-one tools
- often only for non-synonymous variants!

examples

CADD

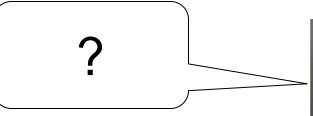
Combined Annotation Dependent Depletion

CONDEL CONsensus DELeteriousness dbNSFP

Database for functional prediction and annotation of all potential non-synonymous single-nucleotide variants

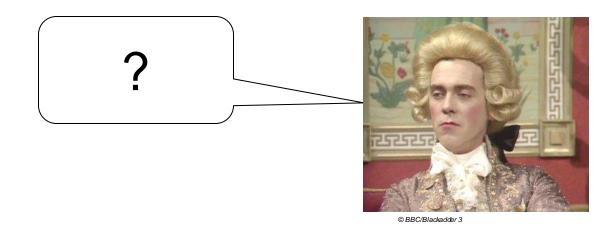
- non-synonymous variants
- splice site variants
- pre-computer values from many prediction tools
- many pre-computed combination scores
- allele frequencies
- no InDels!
- no web interface

VARIANT PRIORITISATION



How can you interpret 10,000+ variants? Bioinformatics!

© Justin Stephens/Corbis Outline



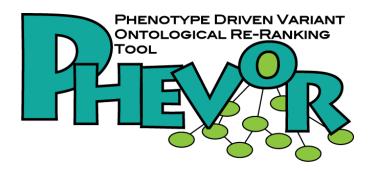
A world apart.

[dominik@alpedhuez ~]\$./RankVariants.pl -VCF GenotypeFile.vcf					
-phenoty	pe:HP:11522,HP:115	521,HP:200018	8,HP:11520 -moi:x-	linked-recessive	
Gene ID	Ensembl	Symbol	Variant	Score	
5956	ENSG00000102076	OPN1LW	X:153409698TT>T	0.998	
10125	ENSG00000172575	RASGRP1	15:38780304T>C	0.763	
10125	ENSG00000172575	RASGRP1	15:38781304C>A	0.665	
7273	ENSG00000155657	TTN	2:179390716A>C	0.541	
3930	ENSG00000143815	LBR	1:225589204C>T	0.221	
28	ENSG00000175164	ABO	9:136125788A>G	0.050	

Enough for a mouse model?

© Markus Schuelke (Charité)

Software should adapt to the user!


© Wilson Afonso (WikiCommons)

(Some) all-in-one tools

Phenolyzer

Exomiser

Finding disease mutations with

Daniela Hombach

Healthy exome plus two heteroz. SOD1 mutations (causing recessive ALS)

mutation t@sting

QueryEngine

- single query
- <u>query chromosomal positions</u>
- QueryEngine
- MutationDistiller (public beta)
- RegulationSpotter (public beta)
- other applications | team

We offer automated MutationTaster analysis of variants from Next Generation Sequencing projects. Variants must be in <u>VCF format</u> and refer to GRCh37 / hg19. After your VCF file has been analysed, the link to download the results (archived as .zip) will be send via E-mail to you. For this reason, you have to provide a valid E-mail address. Look up more details in the documentation.

Data		
VCF file	Browse No file selected.	Please zip or gzip large files! sample file
Format: #CHROM POS ID REF ALT QUAL chr1 10199 . A C 4.77 (tab delimited) The coordinates must Project name E-mail address Analysis settings		
homozygous variants only combine neighbouring variants filter polymorphisms minimum coverage	<pre>yes yes 1000G ExAC homozygous in >= 4 10 present (het or hom) in >= number of individuals in 1000G or ExAC, set values to 0 to stop filtering 10 Submit</pre>	 analyse complete VCF but only exons with 10 bases intron flanking analyse variants on chr but only exons with 10 bases intron flanking analyse custom regions (select to enter) exclude custom regions (select to enter)

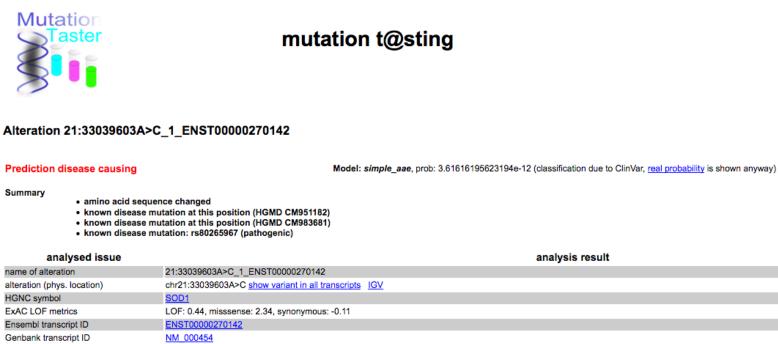
Healthy exome plus two heteroz. SOD1 mutations (causing recessive ALS)

Mutation	MutationDistiller	<u>help / manual</u> <u>disclaimer</u> reset
	upload VCF	display pop-up help
60_348162	show hide mode of inheritance recessive	Submit
2 variant selection	show hide	Submit
3 candidate genes or regions	show hide	Submit
4 patients' phenotype	show hide	Submit
swallowi	search in V HPO OrphaNet OMIM	
HPO: Dysphagia Swallowing difficulty; Swallowing difficulties; Poor swallowing		
HPO: Fatigable weakness of swallowing muscles		
HPO: Oral-pharyngeal dysphagia 'Difficulty swallowing' EXACT		

5 gene function	show hide	Submit
enter pathways or GO terms here	search in 🥑 <u>GeneOntology</u> 💟 <u>Reactome</u>	

Results (overview)

	Distiller)	ALS_comphet 60_348162	inheritance recessive	phenotype (HPO:1324): Muscle weakness (HPO:2015): Dysphagia (HPO:1347): Hyperreflexia (HPO:1257): Spasticity	gene function	expression	panels	hyperlinks bookmark results refine your query	· · · · · · · · · · · · · · · · · · ·
rank	genesymbol	title	score	reported diseases & mutations				variants	
1	<u>SOD1</u>	superoxide dismutase 1 soluble	, 10.2	known disease mutation MAYOTROPHIC LATERAL SCLEROSIS (ALS1) Amyotrophic lateral sclerosis germline, autosomal dominant, autosomal recessive				21:33039603A>C D91A, D72A rs80265967 1000G 0 ExAC 0 21:33039620G>A D78N, D97N rs121912459 1000G 1000G ExAC 0	carriers 2 136 comp-het ON 1
2	TIN	titin	9.8	CARDIOMYOPATHY, DILATED (CMD1G) CARDIOMYOPATHY, FAMILIAL HYPERTROPHIC HEREDITARY MYOPATHY WITH EARLY RESPIRA MUSCULAR DYSTROPHY, LIMB-GIRDLE, TYPE (MYOPATHY, EARLY-ONSET, WITH FATAL CARDIC TIBIAL MUSCULAR DYSTROPHY, TARDIVE (TMU Autosomal recessive centronuclear myopathy Classic multiminicore myopathy Classic multiminicore myopathy Familial isolated arrhythmogenic ventricular dysplase Familial isolated dilated cardiomyopathy Hereditary proximal myopathy with early respiratory Tibial muscular dystrophy mitochrondrial, germline, xlinked recessive, loss of function	ATORY FAILURE (HM LGMD2J) DMYOPATHY (EOMF)) / / iia, biventricular form iia, left dominant form iia, right dominant form	c) m	acossiva	2:179428370C>T G18557R, G1843 G27497R, G1862 rs201158906 ho 1000G 0 ExAC 2:179634421T>G T2917P, T2963P rs200875815 1000G 1000G 1000G 12	2R, G25856R, G 4R m carriers 1 215 comp-het IGV


Inspect prediction details

documentation

(explain)

hyperlink

Ensembl transcript ID	ENST0000270142
Genbank transcript ID	<u>NM_000454</u>
UniProt peptide	P00441
alteration type	single base exchange
alteration region	CDS
DNA changes	c.272A>C g.7669A>C
AA changes	D91A Score: 126explain score(s)
frameshift	no
length of protein	normal
known variant	Reference ID: <u>rs80265967</u>
	database homozygous (C/C) heterozygous allele carriers
	<u>1000G</u> 0 2 2
	<u>ExAC</u> 0 136 136

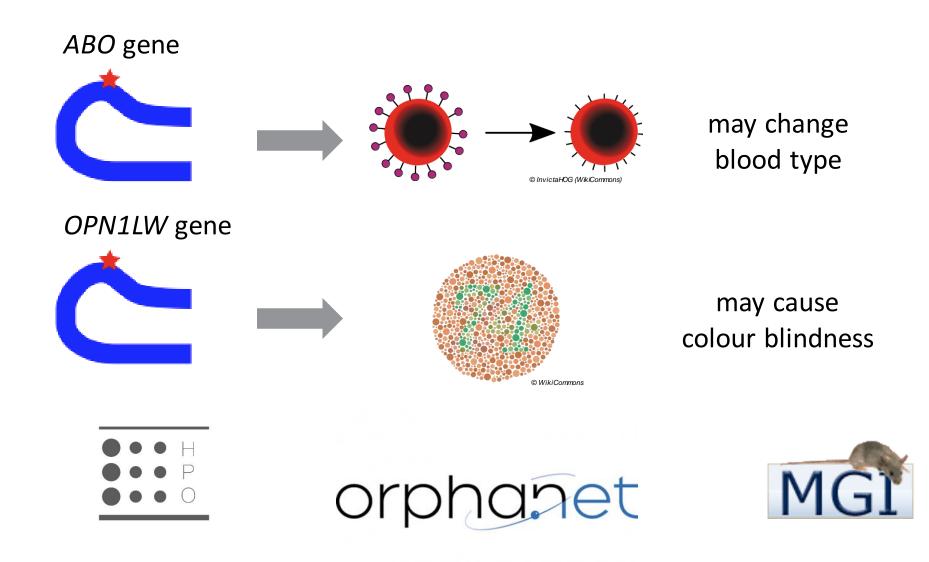
known disease mutation: rs80265967 (pathogenic for Amyotrophic lateral sclerosis type 1|Amyotrophic lateral sclerosis 1, autosomal recessive|Amyotrophic Lateral Sclerosis, Dominant|not specified) dbSNP_NCBI variation viewer

Gene information included!

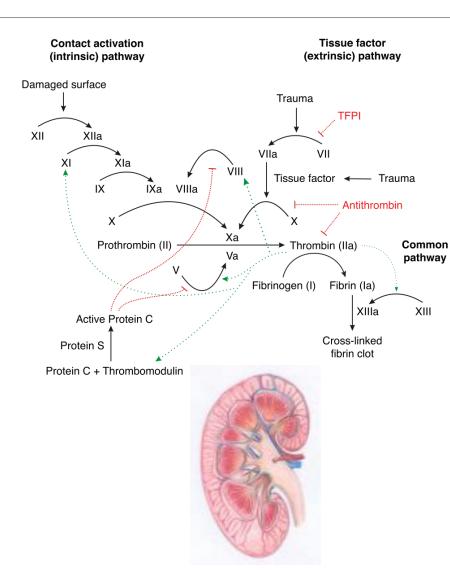
genesymbol	type	description	chr.	startpos	endpos	synonyms	
<u>SOD1</u> #1	protein-coding	superoxide dismutase 1, soluble	21	33031935	33041244	ALS1, IPOA, SOD, homodimer, ALS, hSod1, HEL-S-44	
	reported mutations	germline, autosomal dominant, autosomal recessive					
	overall score		10.2				
		ClinVar	0.5				
		HPO	5.713	6335821195			
		MOI	2				
		homozygous	2				
	links	NCBI ENSEMBL SwissProt GeneCards STRING	<u>UniHI</u>	PubMed create p	rimers for all trans	cripts	
	KEGG pathways	Peroxisome, Amyotrophic lateral sclerosis (ALS), Hun	ington's	s disease, Prion di	seases		
	Reactome pathways	ostasis, Platelet degranulation					
	PFAM	sodcu;					
	InterPro domains	Superoxide dismutase, copper/zinc binding domain					
	paralogs	SOD3 (24%), CCS (26%)					
	HPO show all collapse	Autosomal recessive inheritance direct match score: Spasticity direct match score: 1.329166666666667 (336) Muscle weakness direct match score: 1.25802816901408 Hyperreflexia direct match score: 0.858846153846154 (520 Dysphagia direct match score: 2.06759259259259 (216) Upper motor neuron dysfunction parent 1 score: Bulbar palsy child 1 score: Distal muscle weakness child 1 score: Respiratory insufficiency due to muscle weakness	(355)				
	OMIM AMYOTROPHIC LATERAL SCLEROSIS 1 (ALS1) phenotypic locus						
	show all collapse	synopsis:					
		INHERITANCE: Autosomal dominant MUSCLE: Muscle weakness and atrophy Fasciculations Muscle cramps					

Gene information included!

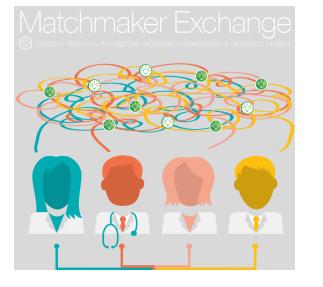
positive regulation of cytokine production


placenta development
retina homeostasis
response to amphetamine

OrphaNet	Amyotrophic lateral sclerosis Age of onset: Adult Known mutations: germline, autosomal dominant, autosomal recessive (assessed)								
generifs show all collapse	 The methylation status OF extracellular superoxide dismutase gene is associated with the size of cerebral infarction, degree of cerebral arteriosclerosis and severity of neurological impairment. the effects of oxidative modification on SOD1 monomer and homodimer stability Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS [] In transgenic mice expressing SOD1, lower POMC levels were observed in hypothalamus in an ALS model. Data show that transformation of voltage dependent anion channel VDAC1 (Deltapor1) yeast with human Cu/Zn superoxide dismutase (SOD1) completely restores the cell growth deficit. pathological TDP-43 and FUS may exert motor neuron pathology in amyotrophic lateral sclerosis through the initiation of propagated misfolding of SOD1 The expression of hSOD1 in the liver of Sod1(-/-) mice significantly improved the lifespan of Sod1(-/-) mice; however, the lifespan of the Sod1(-/-)/hSOD1(alb) mice was still significantly shorter than wild type mice. overexpression of SOD1 in C5786SJL-Tg (SOD1)2 Gur/J mouse preserved the normal HR, MAP, and BRS but enhanced aortic depressor nerve function the results of the study suggest that an inherent low autophagy capacity might cause the selective vulnerability of the motor system to mutant SOD1s. 								
MGD	 hearing/vestibular/ear phenotype nervous system phenotype vision/eye phenotype immune system phenotype skeleton phenotype liver/biliary system phenotype behavior/neurological phenotype reproductive system phenotype mortality/aging cardiovascular system phenotype hematopoietic system phenotype endocrine/exocrine gland phenotype cellular phenotype cellular phenotype cellular phenotype hemotype 								
transcripts	ENST00000470944: 1746 bases (processed_transcript) ENST00000270142: 966 bases (protein_coding) ENST00000389995: 865 bases (protein_coding) ENST00000476106: 586 bases (processed_transcript)								
interactions (STRING) show all collapse	ACO1 (textmining 717) AIFM1 (textmining 409) ANG (textmining 463) ARL6IP5 (textmining 440) ATP5J (coexpression 562) BTBD10 (textmining 463) CASP9 (textmining 609) CDK5 (textmining 739)	ACO2 (textmining 886) AKT1 (textmining 598) APAF1 (textmining 443) ATOX1 (textmining 633) ATP7A (textmining 629) C1orf122 (textmining 532) CAT (textmining,neighborhood 939) CEBPG (textmining 611)	ACP1 (textmining,neighborhood 578) ALS2 (textmining 918) APOE (textmining 495) ATP2C1 (textmining,experimental 594) BCL2 (textmining,experimental 636) CAMK2N1 (textmining 443) CBR3 (textmining 465) CHAT (textmining 573)	AGER (textmining 427) AMFR (textmining 822) APP (textmining 639) ATP5F1 (coexpression,textmining 464) BICD2 (textmining 413) CASP3 (textmining 825) CCS binding (odb.grid,kegg_pathways,intact,mint 971) CHCHD4 (textmining 425)					
GeneOntology show all collapse	activation of MAPK activity response to superoxide ovarian follicle development								


Consider the disease / phenotype

Consider gene function & expression



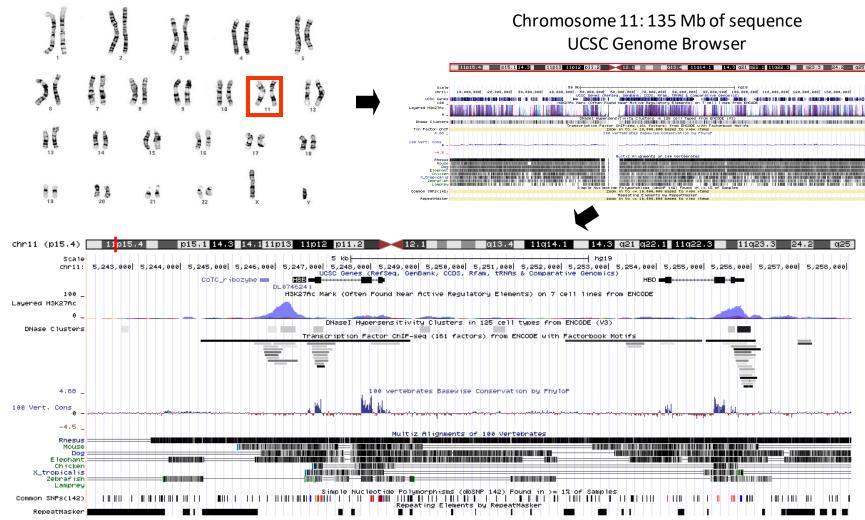
Match-making

- Did others report this variant?
- Find partners!
- Please share your variants of unknown significance!

General considerations

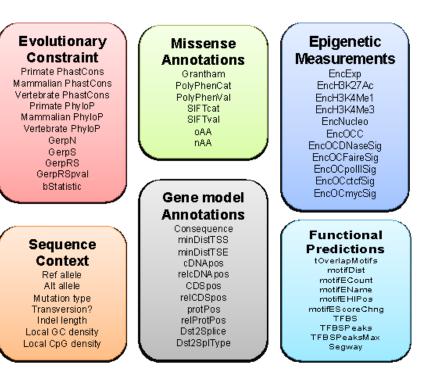
Use your brain!

- don't trust predictors blindly
- disease databases may be wrong
- think of reduced penetrance & compound heterozgyosity
- do not exclude synonymous variants
- check variant with IGV
- look up polymorphism databases
- consider phenotype & gene function
- consider gene expression
- do segregation analysis!


CHALLENGES OF INTERPRETING NON-CODING VARIANTS

- 1. No information vs information overload
- 2. Combined variant scores
- 3. Experimental assessment using reporter assays

No information vs information overload



2017-05-28 ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools

Which annotation to use?

- Expanding panoply of partially correlated annotations
- Different scales, transformations

 clustering, orthogonalization?
- Apply to variously overlapping subsets of genomic variants
- Most annotations are only defined in very specific contexts: power of domain-specific scores

Combined variant scores

- CADD/DANN: <u>http://cadd.gs.washington.edu</u>
- DeepSEA: <u>http://deepsea.princeton.edu</u>
- Eigen: <u>http://www.columbia.edu/~ii2135/download.html</u>
- FATHMM-MKL: <u>http://fathmm.biocompute.org.uk/</u>
- FunSeq2: <u>http://funseq2.gersteinlab.org/</u>
- GAWAVA: http://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/VEP_plugin/
- ReMM: <u>https://charite.github.io/software-remm-score.html</u>
- LINSIGHT: http://compgen.cshl.edu/~yihuang/LINSIGHT/

2017-05-28 | ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools

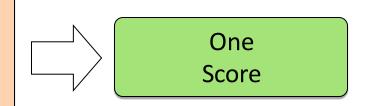
. . .

Combined variant scores: CADD (1)

published online 2 February 2014; doi:10.1038/ng.2892

TECHNICAL REPORTS

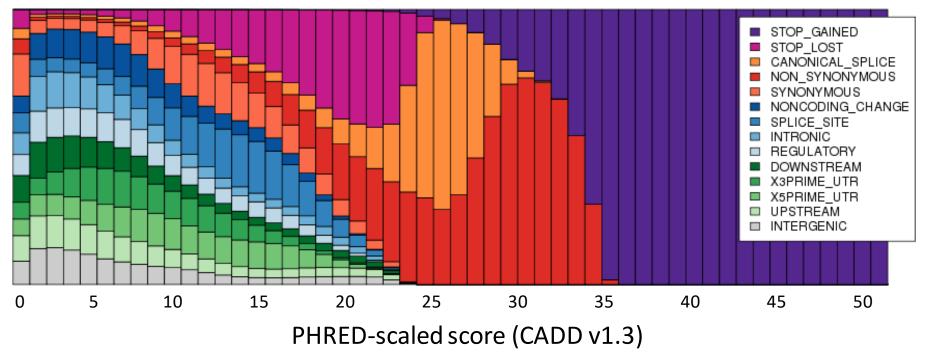
nature genetics


A general framework for estimating the relative pathogenicity of human genetic variants

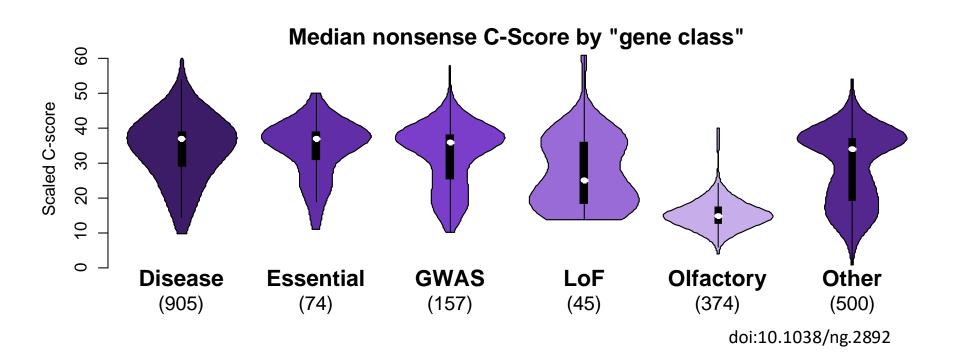
Martin Kircher^{1,5}, Daniela M Witten^{2,5}, Preti Jain^{3,4}, Brian J O'Roak^{1,4}, Gregory M Cooper³ & Jay Shendure¹

Current methods for annotating and interpreting human genetic variation tend to exploit a single information type

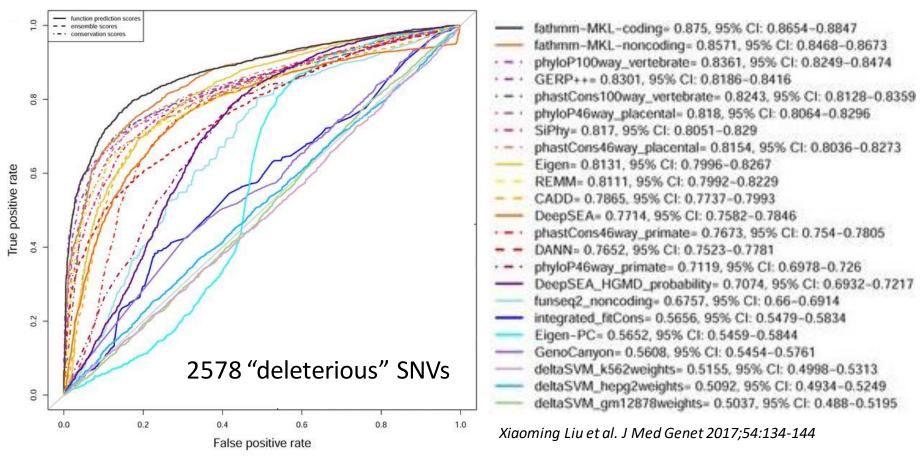
> 80 diverse annotations


Evolutionary constraint Missense annotations Gene model annotations Sequence context Epigenetic measurements Functional predictions comparable, making it difficult to evaluate the relative importance of distinct variant categories or annotations. Third, annotation nethods trained on known pathogenic mutations are subject to major

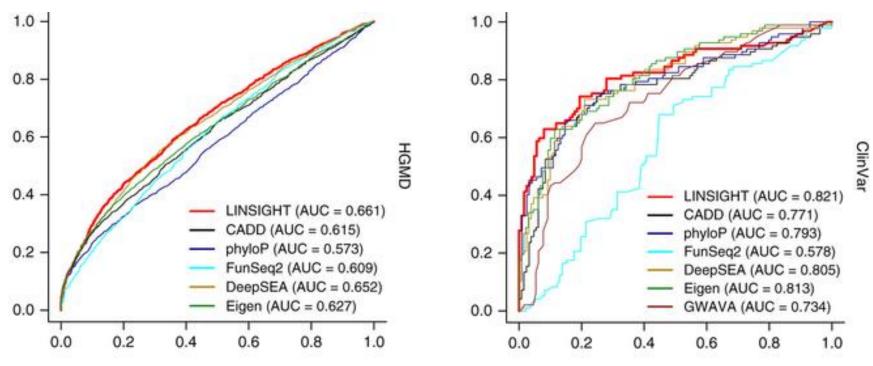
Combined variant scores: CADD (2)



- All variants are ranked relative to all nine billion possible substitutions in the human genome
- Median scores by categories are inline with common hierarchies


• Scores provide resolution across and within functional categories

How well does it work for non-coding disease variants?


Performance on non-coding variants in HGMD database8 V.2015.4

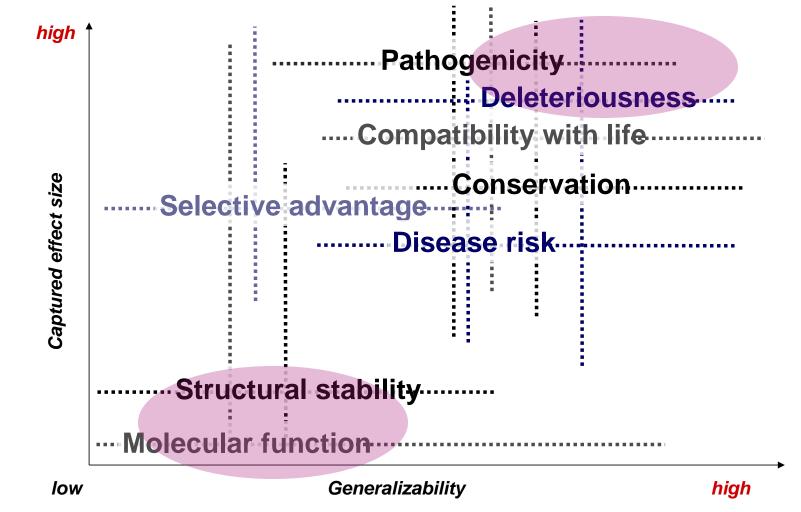
Other data set, similar problems, other results...

More rigorously matched benign set and comparison between non-overlapping HGMD (n=1495) and ClinVar (n=101) sets

Huang YF et al. Nature Genetics 49, 618-624 (2017), DOI: 10.1038/ng.3810

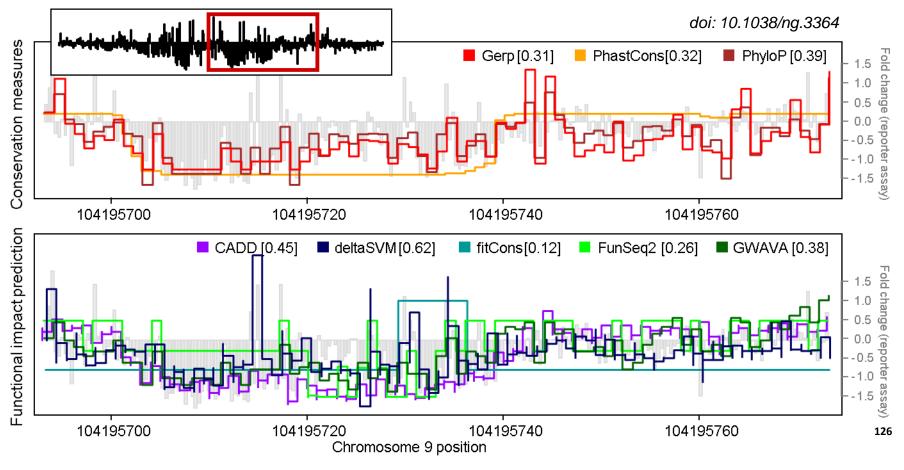
2017-05-28| ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools

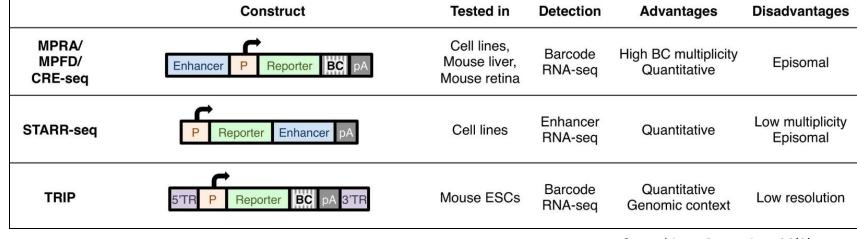
Few known high quality non-coding mutations?


• Recent study used HGMD as well as literature research:

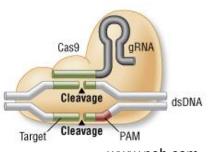
Category	Count	
Enhancer	42	
Promoter	142	
5' UTR	153	Smedley D &
3' UTR	43	Schubach M
Large non-coding RNA gene	65	et al. AJHG 2016
MicroRNA gene	5	
Imprinting control region	3	
Total	453	
Total single-nucleotide variants	406	

- Variants are clustered:
 - 142 promoter variants in 52 genes, 11 genes contribute 50%
 - 18 genes contribute 50% of all 338 promoter+UTR variants
 - 65 RNA gene mutations are in only 3 genes


Are we looking for the right effect size?

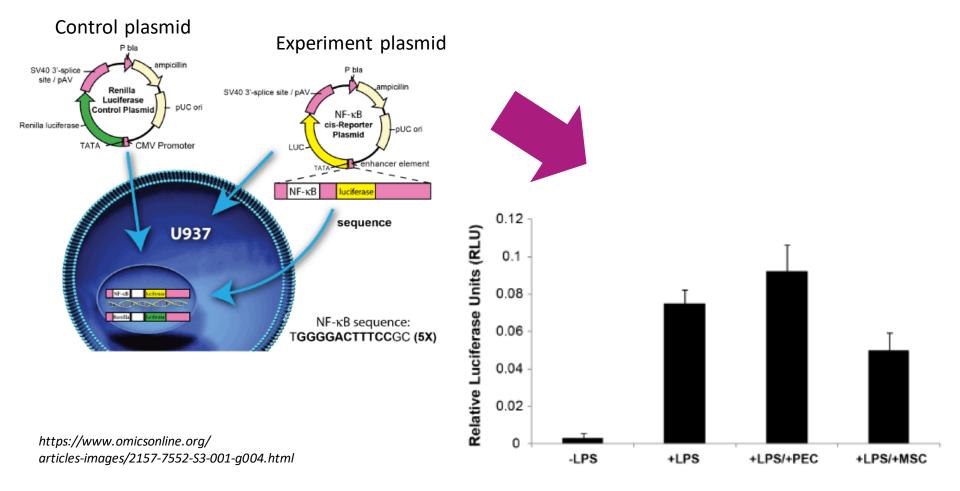


Saturation mutagenesis of ALDOB enhancer (*Patwardhan et al, 2012*) correlated with measures of sequence conservation (*top*) and functional constraint/variant impact scores (*bottom*)

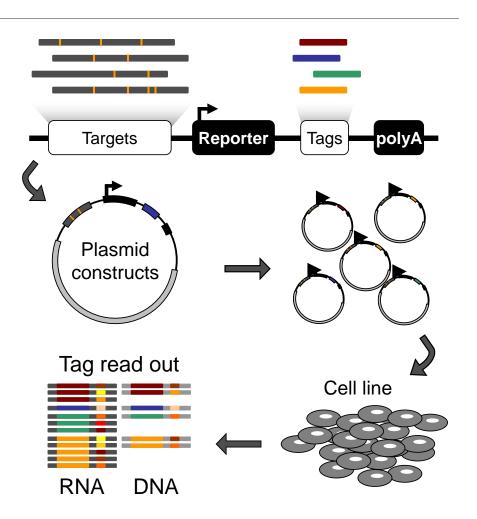

Can we obtain more non-coding variants from high-throughput assays?

- CRISPR/Cas9: mutation, deletion, activator/repressor screens, ...
- MPRAs
 - 1. Dense read outs for mutations in select regions
 - 2. Test activity of regions (cataloging elements / learning rules)
 - 3. Large sets of readouts for genomically scattered mutations

F. Inoue & N. Ahituv, Genomics 106(3), September 2015, Pages 159-164



www.neb.com


Background: reporter assays

Massively parallel reporter assays (MPRA)


- Generate sequence variants
- Integrate plasmid or lenti library containing tag sequences
- Learn association between tags and sequence variants
- Express in cell line and collect RNA & DNA to readout tags
- Analyze RNA/DNA ratio

Delbrück Center

TERT promoter

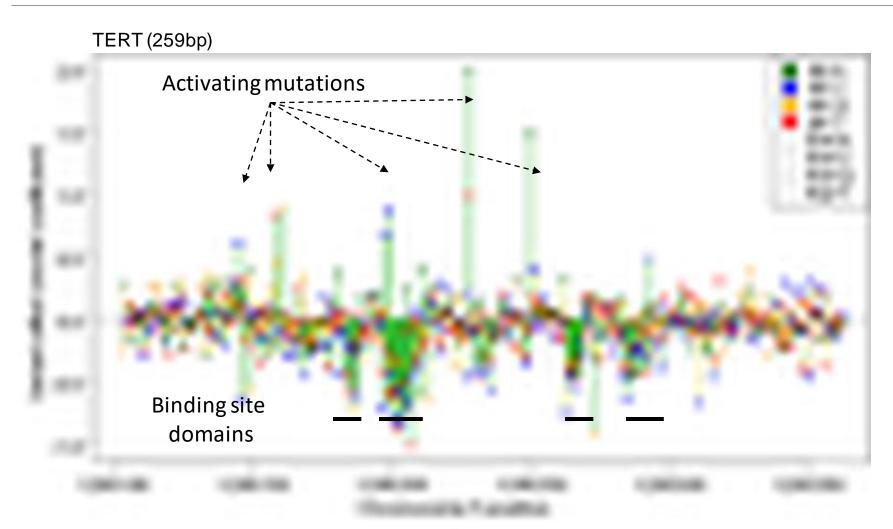
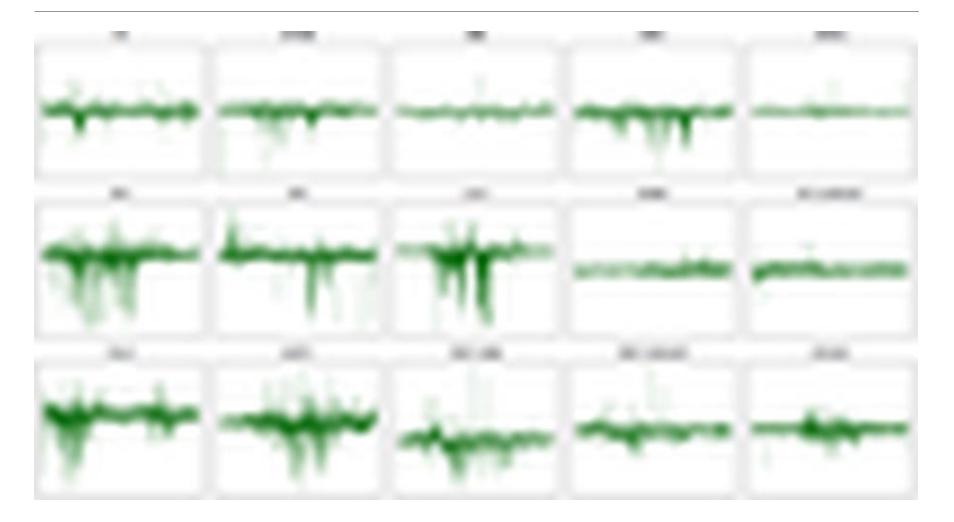
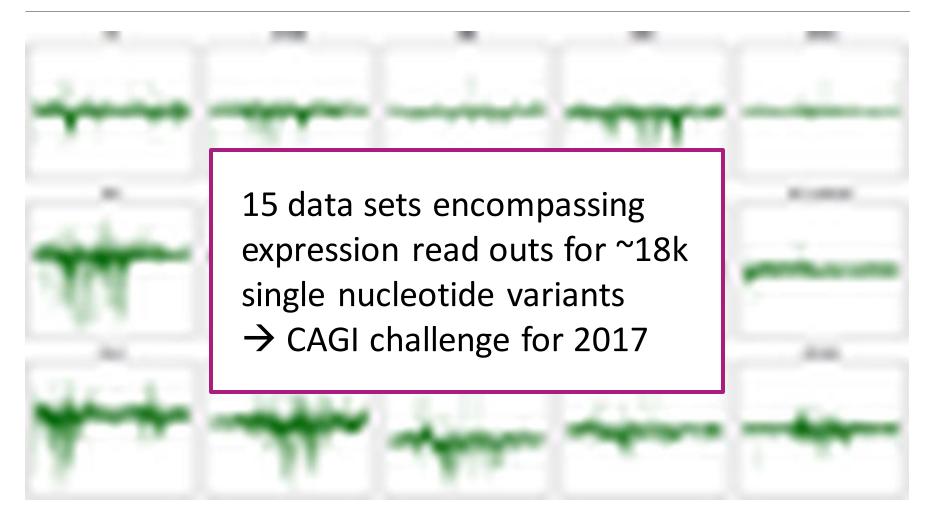


Figure 1. Schematic of transcription factor binding sites in human Telomerase Reverse Transcriptase (*hTERT*) promoter. Chromosomal sequence extending from 3.5 kb upstream and 150 bp downstream of *hTERT* translation start site (+1) is represented by the gray box. Horizontal lines above and below the box indicate approximate binding sites of respective transcription factors. Blue lines: hotspot promoter mutations ("-124" corresponds to C228T mutation; "-146" corresponds to C250T mutation); green: activator; red: repressor; purple: regulator with dual roles; dotted line: regulator bound to sites created by hotspot mutations. Genes 2016, 7(8), 50; doi:10.3390/genes7080050

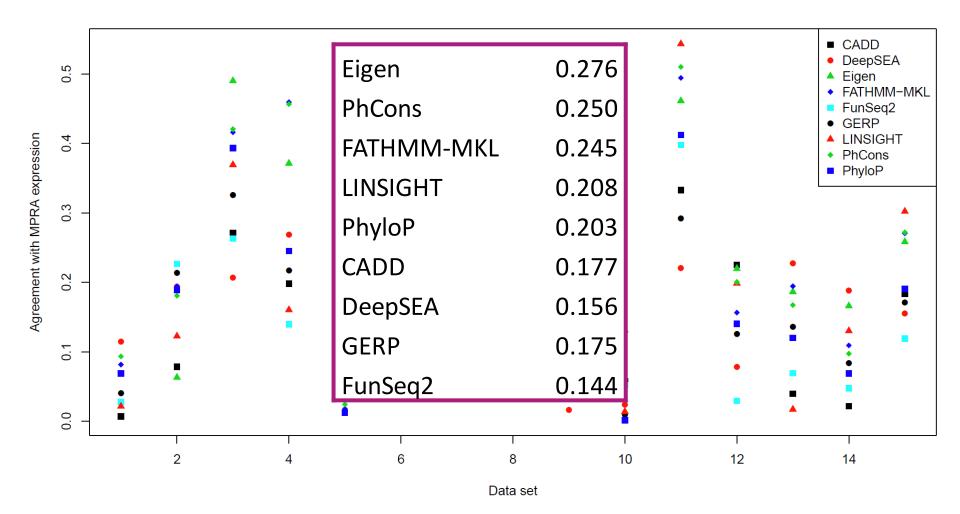
Saturation mutagenesis of TERT promoter in HEK293T



2017-05-28| ESHG 2017 Workshop 05: Defining "mutation" or "polymorphism" using prediction tools


New saturation mutagenesis data sets

New saturation mutagenesis data sets



What about the variant scores?

How should I consider regulatory mutations in my projects for now?

1. Use available element annotations

- Enhancer, Promoter annotations, e.g.
 - Ensembl Regulatory Build:

ftp://ftp.ensembl.org/pub/current_regulation/homo_sapiens/RegulatoryFeatureActivity/

• Epigenomics RoadMap:

http://egg2.wustl.edu/roadmap/web_portal/predict_reg_motif.html#predicting_reg

- Fantom5: <u>http://enhancer.binf.ku.dk/presets/</u>
- DHS sites, e.g. <u>http://egg2.wustl.edu/roadmap/web_portal/DNase_reg.html#delieation</u>
- Segmentation (e.g. Epigenomics RoadMap)

2. Use available combined scores within these elements

QUESTIONS AND PARTICIPANT FEEDBACK

THANK YOU!

CONTACT

Malte Spielmann

Martin Kircher

Dominik Seelow

spielman@uw.edu martin.kircher@bihealth.de dominik.seelow@charite.de

